Q 1		mark		Sub
(a) (i)	240 i N s \rightarrow	B1		1
(ii) (A)	240 i = 70 i +50 v so v = 3.4 i m s ⁻¹	M1 A1	Equating to their 240 i in this part FT 240 i	
(B)	$240 \mathbf{i} = 70u \mathbf{i} - 50u \mathbf{i}$	M1	Must have <i>u</i> in both RHS terms and opposite signs	
	u = 12 so $v = -12$ i m s ⁻¹	A1	FT 240 i	
(C)	240 $i = 280(i + j) + 50v_B$	M1	FT 240 i Must have all terms present	
	so $v_{\rm B} = (-0.8 \ i - 5.6 \ j) \ {\rm m \ s^{-1}}$	A1	cao	6
(b) (i)	before 4 m s^{-1} 2 m s^{-1} after v_1 v_2 v_2 v_2			
	NEL $\frac{v_2 - v_1}{-2 - 4} = -0.5$ so $v_2 - v_1 = 3$ PCLM $8 - 6 = 2v_1 + 3v_2$ Solving $v_2 = 1.6$ so 1.6 m s ⁻¹ \rightarrow $v_1 = -1.4$ so 1.4 m s ⁻¹ \leftarrow	M1 A1 M1 A1 A1 A1	NEL Any form PCLM Any form Direction must be clear (accept diagram) Direction must be clear (accept diagram). [Award A1 A0 if $v_1 \& v_2$ correct but directions not clear]	6
(ii)	1.6 m s ^{-1} at 60° to the wall (glancing angles both 60°)	B1 B1	FT their 1.6	
	No change in the velocity component parallel to the wall as no impulse No change in the velocity component perpendicular to the wall as perfectly elastic	E1 E1	Must give reason Must give reason	
				4

Q 2		mark		Sub
(i)	We need $\frac{mgh}{t} = \frac{850 \times 9.8 \times 60}{20} = 24990$ so approx 25 kW	M1 E1	Use of $\frac{mgh}{t}$ Shown	2
(ii)	Driving force – resistance = 0 25000 = 800v so $v = 31.25$ and speed is 31.25 m s ⁻¹	B1 M1 A1	May be implied Use of $P = Fv$	3
(iii)	Force is $\frac{25000}{10} = 2500$ N N2L in direction of motion 2500 - 800 = 850a a = 2 so 2 m s ⁻²	B1 M1 A1	Use of N2L with all terms	
(iv)	$0.5 \times 850 \times 20^{2} = 0.5 \times 850 \times 15^{2}$ +25000 × 6.90 -800x x = 122.6562 so 123 m (3 s. f.)	M1 B1 B1 B1 A1 A1	W-E equation with KE and power term One KE term correct Use of <i>Pt</i> .Accept wrong sign WD against resistance. Accept wrong sign All correct cao	3
(v)	either $0.5 \times 850 \times v^2 = 0.5 \times 850 \times 20^2$ $-850 \times 9.8 \times \frac{105}{20}$ -800×105 $v^2 = 99.452 \text{ so } 9.97 \text{ m s}^{-1}$ or N2L + ve up plane $-(800 + 850g \times 0.05) = 850a$ a = -1.43117 $v^2 = 20^2 + 2 \times (-1.43117) \times 105$	M1 M1 A1 B1 A1 M1 A1 M1	 W-E equation inc KE, GPE and WD GPE term with attempt at resolution Correct. Accept expression. Condone wrong sign. WD term. Neglect sign. cao N2L. All terms present. Allow sign errors. Accept ± Appropriate <i>uvast</i>. Neglect signs. 	
	$v^2 = 99.452$ so 9.97 m s ⁻¹	A1 A1 19	All correct including consistent signs. Need not follow sign of <i>a</i> above. cao	5

PMT

(i)				
	$28\left(\frac{\overline{x}}{\overline{y}}\right) = 16\left(\frac{2}{2}\right) + 2\left(\frac{5}{0}\right) + 2\left(\frac{6}{1}\right) + 2\left(\frac{5}{2}\right)$ $+ 2\left(\frac{0}{5}\right) + 2\left(\frac{1}{6}\right) + 2\left(\frac{2}{5}\right)$ $\overline{x} = 2.5$ $\overline{y} = 2.5$	M1 B1 B1 A1 A1	Complete method Total mass correct 3 c. m. correct (or 4 <i>x</i> - or <i>y</i> -values correct) [Allow A0 A1 if only error is in total mass] [If $\bar{x} = \bar{y}$ claimed by symmetry and only one component worked replace final A1, A1 by B1 explicit claim of symmetry A1 for the 2.5]	5
(ii)	$\overline{x} = \overline{y}$ $28\overline{x} = 16 \times 2 + 6 \times 4 + 2 \times 0 + 2 \times 1 + 2 \times 2$ $\overline{x} = \frac{31}{14} (2.21428)$ $= 8 \times (-1) + 4 \times (-2) = 4 (-0.57142)$	B1 M1 A1 A1	Or by direct calculation Dealing with 'folded' parts for \overline{x} or for \overline{z} At least 3 terms correct for \overline{x}	5
	$\overline{z} = \frac{8 \times (-1) + 4 \times (-2)}{28} = -\frac{4}{7} (-0.57142)$ Distance is $\sqrt{\left(\frac{31}{14}\right)^2 + \left(\frac{31}{14}\right)^2 + \left(\frac{4}{7}\right)^2}$ = 3.18318 so 3.18 m (3 s. f.)	A1 A1 M1 F1	All terms correct allowing sign errors Use of Pythagoras in 3D on their c.m.	8
(iii)	A 3.18318 centre of mass $A/A/7$ C	M1 B1	c.m. clearly directly below A Diagram showing α and known lengths (or equivalent). FT their values. Award if final answer follows their values.	
	$\sin \alpha = \frac{4}{7}/3.18318$ so $\alpha = 10.3415$ so 10.3° (3 s. f.) total	M1 A1 17	Appropriate expression for α . FT their values. cao	4

Mark Scheme

Q 4		mark		Sub
(a)	Moments c.w. about A			
(i)	2R = 5L so $R = 2.5L$	E1		
	Resolve $\rightarrow U = 0$	E1		
	Resolve \uparrow $V + R = L$	M1	Resolve vertically or take moments about B (or C)	
	so $V = -1.5L$	E1		4
(ii)				4
(/	$A \xrightarrow{45^{\circ}} T_{AC}$			
		M1	Equilibrium at a pin-joint	
	$1.5 L$ T_{AB}			
	For equilibrium at A	M1	Attempt at equilibrium at A or C including resolution	
			with correct angle	
	$\uparrow T_{AB} \cos 45 + 1.5L = 0$			
	so $T_{AB} = -\frac{3\sqrt{2}L}{2}$ so $\frac{3\sqrt{2}L}{2}$ N (C) in AB	A1	(2.12 <i>L</i> (3 s. f.))	
	$\rightarrow T_{AC} + T_{AB} \cos 45 = 0$			
	so $T_{\rm AC} = \frac{3L}{2}$ so $\frac{3L}{2}$ N (T) in AC	F1	(1.5 <i>L</i>)	
	At C $\downarrow L + T_{\rm BC}\cos\theta = 0$	M1	Must include attempt at angle	
	$\tan\theta = 3/2 \Longrightarrow \cos\theta = 2/\sqrt{13}$	B1		
	so $T_{\rm BC} = -\frac{\sqrt{13}L}{2}$ so $\frac{\sqrt{13}L}{2}$ N (C) in BC	A1	(1.80 <i>L</i> (3 s. f.))	
	2 2	F1	Award for T/C correct from their internal forces.	
			Do not award without calcs	8
(b)	$\searrow^{F} \mathcal{I}^{R}$			
(i)				
	$A \qquad G \qquad \pi^{S}$		All forces present with arrows and labels.	
		B1	Angles and distances not required.	
	A = A = A = A = A = A = A = A = A = A			
	$W \checkmark _$			
				1
(ii)	c.w.moments about B $R \times 3 - W \times 1 \cos \theta = 0$	M1	If moments about other than B, then need to resolve	
		1711	perp to plank as well	
		A1	Correct	
	so $R = \frac{1}{3}W\cos\theta$	A1		
	5			3
(iii)	Resolve parallel to plank			-
	$F = W \sin \theta$	B1		
	$\mu = \frac{F}{E} = \frac{W \sin \theta}{W} = 3 \tan \theta$			
	$\mu = \frac{F}{R} = \frac{W\sin\theta}{\frac{1}{3}W\cos\theta} = 3\tan\theta$	M1	Use of $F = \mu R$ and their F and R	
		A1	Accept any form.	
	total	19		3
	total	19		

Q 1		mark		Sub
(i)	16 = 0.4v so 40 m s ⁻¹	M1 A1	Use of $I = \Delta m v$	2
(ii)	PCLM \uparrow + ve $0.4 \times 32 - 0.6u = 0.4v_{p} + 0.6 \times 4$ NEL \uparrow +ve $\frac{4 - v_{p}}{-u - 32} = -0.1$ Solving u = 18	M1 A1 M1 A1 E1	Use of PCLM Any form Use of NEL. Allow sign errors. Any form Must be obtained from a pair of correct equations. If given $u = 18$ used then $v_P = -1$ must be obtained from 1 equation and both values tested in the second equation	
	$v_{\rm p} = -1$ so 1 m s ⁻¹ downwards	A1 A1	cao. Accept use of given $u = 18$ cao	7
(iii)	Considering the momenta involved $0.5 \begin{pmatrix} -3.6 \\ 5.2 \end{pmatrix} = 0.2 \begin{pmatrix} 3 \\ 4 \end{pmatrix} + 0.3 \mathbf{v}_{\mathrm{D}}$ $\mathbf{v}_{\mathrm{D}} = \begin{pmatrix} -8 \\ 6 \end{pmatrix} \text{ so } a = -8 \text{ and } b = 6$ Gradients of the lines are $\frac{4}{3}$ and $\frac{6}{-8}$ Since $\frac{4}{3} \times \frac{6}{-8} = -1$, they are at 90°	M1 B1 A1 A1 A1 M1 E1	PCLM applied. May be implied. LHS momentum of C correct Complete equation. Accept sign error. cao cao Any method for the angle Clearly shown	
				8 17

Q 2		mark		Sub
(i)	Moments about C $240 \times 2 = 3R_{\rm D}$ $R_{\rm D} = 160$ so 160 N	M1 A1	Moments about C or equivalent. Allow 1 force omitted	
	Resolve vertically $R_{\rm C} + R_{\rm D} = 240$	M1	Resolve vertically or moments about D or equivalent. All forces present.	
	$R_{\rm c} = 80 \text{ so } 80 \text{ N}$	F1	FT from thei r $R_{\rm D}$ only	4
(ii) (A)	Moments about D $240 \times 1 = 4T \sin 40$	M1 M1 A1	Moments about D or equivalent Attempt at resolution for RHS RHS correct	
<i>(</i> ··)	<i>T</i> = 93.343 so 93.3 N (3 s. f.)	A1		4
(ii) (B)	In equilibrium so horizontal force needed to balance cpt of T . This must be friction and cannot be at C.		Need reference to horizontal force that must come from friction at D.	1
(iii)				
(A)	Moments about B $3 \times 240 \times \cos 30 = 6P$	M1	All terms present, no extras. Any resolution required attempted.	
	$P = 60\sqrt{3}$ (103.92)	E1	Accept decimal equivalent	
	<i>P</i> inclined at 30° to vertical	B1	Seen or equivalent or implied in (iii) (A) or (B).	
	Resolve horizontally. Friction force F $F = P \sin 30$	M1	Resolve horizontally. Any resolution required attempted	
	so $F = 30\sqrt{3}$ (51.961)	A1	Any form	5

(iii) (B)	Resolve vertically. Normal reaction R $P\cos 30 + R = 240$	M1 A1	Resolve vertically. All terms present.and resolution attempted	
	Using $F = \mu R$	M1		
	$\mu = \frac{30\sqrt{3}}{240 - 60\sqrt{3} \times \frac{\sqrt{3}}{2}}$	A1	Substitute their expressions for F and R	
	$=\frac{30\sqrt{3}}{240-90}=\frac{\sqrt{3}}{5}=0.34641 \text{ so } 0.346 \text{ (3)}$ s. f.)	A1	cao. Any form. Accept 2 s. f. or better	
				5
				19

Mark Scheme

January

Q 3		mark		Sub
(a) (i)	$80\left(\frac{\overline{x}}{\overline{y}}\right) = 48\left(\frac{6}{2}\right) + 12\left(\frac{1}{-3}\right) + 20\left(\frac{11}{9}\right)$ $80\left(\frac{\overline{x}}{\overline{y}}\right) = \left(\frac{520}{240}\right)$	M1 B1 B1	Correct method for c.m. Total mass correct One c.m. on RHS correct	
	$\overline{x} = 6.5$ $\overline{y} = 3$	E1 A1	[If separate components considered, B1 for 2 correct] cao	5
(ii)	Consider x coordinate $520 = 76 \times 6.4 + 4x$ so $x = 8.4$	M1 B1 A1	Using additive principle o. e. on <i>x</i> cpts Areas correct. Allow FT from masses from (i) cao	3
(iii)	y coordinate is 1 so we need $240 = 76\overline{y} + 4 \times 1$ and $\overline{y} = 3.10526$ so 3.11 (3 s. f.)	B1 M1 A1	Position of centre of square cao	3
(b) (i)	Moments about C $4R = 120 \times 3 + 120 \times 2$ so $4R = 600$ and $R = 150$	M1 E1	Moments equation. All terms present	2
(ii)	150 N T_{AE} T_{ED} T_{DC} T_{DC} T_{AB} T_{DC} T_{BC} T_{DC} T_{DC} T_{BC} T_{DC} T_{D	B1		
	A \uparrow 150 + $T_{AE} \cos 30 = 0$ $T_{AE} = -100\sqrt{3} \text{ so } 100\sqrt{3} \text{ N (C)}$ E \downarrow 120 + $T_{AE} \cos 30 + T_{EB} \cos 30 = 0$ $T_{EB} = 20\sqrt{3} \text{ so } 20\sqrt{3} \text{ N (T)}$	M1 A1 M1 F1 F1	Equilibrium at a pin-joint Any form. Sign correct. Neglect (C) Equilibrium at E, all terms present Any form. Sign follows working. Neglect (T). T/C consistent with answers	

L					6
	(iii)	Consider \rightarrow at E, using (ii) gives ED as thrust	E1	Clearly explained. Accept 'thrust' correctly deduced from wrong answers to (ii).	1
					20

(i) $0.5 \times 20 \times 8^2 - 0.5 \times 20 \times 5^2 + 510$ 6 M1 B1 A1Use of $P = WD/t$ AE. Accept ± 390 soi All correct including signs4(ii) (A) $20g \times \frac{3}{5}x - 5gx$ $7gx$ (68.6x) gainM1 A1Use of mgh on both terms Either term (neglecting signs) \pm^7gx in any form. A14(B) $11gx$ B1 $11gx$ B1(C) (D) $0.5 \times 25 \times 4^2 = 7gx + 11gx = 18gx$ $x = 1.13378$ so 1.13 m (3 s. f.)M1 A1Use of work-energy equation. Allow 1 RHS term omitted.(iii) (x) $cither$ $0.5 \times 35 \times v^2 - 0.5 \times 35 \times 16$ $= 15g \times 0.5 - 11g \times 0.5 - 12g \times 0.5$ $x^2 = 13.76$ so $v = 3.70944$ so 3.71 m s ⁻¹ (3 s. f.)M1 A1Use of work-energy. KE, GPE and WD against friction terms present. AGPE correct caoA1(v) or $15g - T = 15a$ $x = -2.24$ M1 $x = 1.12g - 11g = 20a$ $x = 3.710 m s^{-1} (3 s. f.$)M1 A1 $x = 0$ N2L in 1 or 2 equations. All terms present cao(v) $v^2 = 4^3 + 2x(-2.24) \times 0.5$ $x = 3.710 m s^{-1} (3 s. f.$)M1 A1 A1Use of appropriate (sequence of) uvasr cao	Q 4		mark		Sub
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(i)	6	B1 A1	∆KE. Accept ±390 soi	4
C III(C) $0.5 \times 25 \times 4^2 = 7gx + 11gx = 18gx$ MIUse of work-energy equation. Allow 1 RHS term omitted.(C) $0.5 \times 25 \times 4^2 = 7gx + 11gx = 18gx$ MIUse of work-energy equation. Allow 1 RHS term omitted. $x = 1.13378$ so 1.13 m (3 s. f.)B1 A1KE term correct cao. Except follow wrong sign for $7gx$ (iii)either $0.5 \times 35 \times v^2 - 0.5 \times 35 \times 16$ $= 15g \times 0.5 - 11g \times 0.5 - 12g \times 0.5$ MI 			B1 A1	Either term (neglecting signs) $\pm 7gx$ in any form.	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(B)	11 <i>gx</i>	B1		
X = 1.13378 so 1.13 m (3 s. f.)A1only.3(iii)either $0.5 \times 35 \times v^2 - 0.5 \times 35 \times 16$ $= 15g \times 0.5 - 11g \times 0.5 - 12g \times 0.5$ 	(C)			RHS term omitted. KE term correct	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(iii	x = 1.13378 so 1.13 m (3 s. f.)	A1		3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$)	$0.5 \times 35 \times v^{2} - 0.5 \times 35 \times 16$ = 15g × 0.5 - 11g × 0.5 - 12g × 0.5 $v^{2} = 13.76 \text{ so } v = 3.70944$ so 3.71 m s ⁻¹ (3 s. f.)	B1 A1	against friction terms present. \triangle GPE correct inc sign (1.5g J loss) All correct cao	
		15g - T = 15a $T - 12g - 11g = 20aso a = -2.24v^{2} = 4^{2} + 2 \times (-2.24) \times 0.5$	A1 M1	present cao Use of appropriate (sequence of) <i>uvast</i>	
					4

Q 1		mark		Sub
(a)				
(i) (A)	PCLM \rightarrow +ve $2 \times 4 - 6 \times 2 = 8v$ $v = -0.5 \text{ so } 0.5 \text{ m s}^{-1}$ in opposite direction to initial motion of P	M1 A1 A1	Use of PCLM and correct mass on RHS Any form Direction must be negative and consistent or clear. Accept use of a diagram.	3
(B)	$0.5 \times 2 \times 4^{2} + 0.5 \times 6 \times 2^{2} - 0.5 \times 8 \times (-0.5)^{2}$ = 27 J	M1 A1	Use of KE. Must sum initial terms. Must have correct masses FT their (A) only	2
(ii) (A)	PCLM \rightarrow +ve $2 \times 4 - 6 \times 2 = 2v_{p} + 6v_{Q}$ $v_{p} + 3v_{Q} = -2$ NEL \rightarrow +ve $\frac{v_{Q} - v_{p}}{-2 - 4} = -\frac{2}{3}$ $v_{Q} - v_{p} = 4$ $v_{Q} = 0.5 \text{ so } 0.5 \text{ m s}^{-1} \text{ in orig direction of P}$ $v_{p} = -3.5 \text{ so } 3.5 \text{ m s}^{-1} \text{ in opp to orig dir of P}$	M1 A1 M1 A1 A1 A1	Use of PCLM Any form NEL Any form cao. Direction need not be made clear. cao. Direction must be negative and consistent or clear (e.g diag)	6
(B)	\rightarrow +ve 2×-3.5-2×4=-15 N s so 15 N s in opp to orig direction	M1 A1	Use of change in momentum with correct mass. FT (A). Dir must be clear (e.g. diag)	2
(b)	Let $\alpha = \arcsin(12/13)$ and $\beta = \arcsin(3/5)$ Parallel: $26 \cos \alpha = u \cos \beta$ so $26 \times \frac{5}{13} = u \times \frac{4}{5}$ and $u = 12.5$ Perp: $e = \frac{u \sin \beta}{26 \sin \alpha}$ $= \frac{12.5 \times \frac{3}{5}}{26 \times \frac{12}{13}} = \frac{5}{16}$	M1 A1 A1 F1 F1	PCLM parallel to plane attempted. At least one resolution correct NEL on normal components attempted. FT their <i>u</i> FT their <i>u</i>	6
				6 19

Q 2		mark		Sub
(i)	Diagrams	B1	Internal force at B must be shown	
	cw moments about A			
	$2 \times 90 - 3R_{\rm B} = 0$	M1	1 st moments equation attempted for either force.	
	$R_{\rm B} = 60 $ so 60 N upwards	A1	Accept direction not specified	
	cw moments about R: $T\downarrow$			
	$75 \times 1 + 3T - 60 \times 0.5 = 0$	M1	2 nd moments equation for other force. All forces present. No extra forces.	
		A1	Allow only sign errors	
	T = -15 so 15 N upwards	A1	Direction must be clear (accept diag)	6
				6
(ii)	cw moments about A $90 \times 2\cos 30 - V \times 3\cos 30 - U \times 3\cos 60 = 0$			
	$90 \times 2\cos 30 - V \times 3\cos 30 - U \times 3\cos 00 = 0$	M1	Moments equation with resolution. Accept terms missing	
		A1	All correct. Allow only sign errors.	
	giving $60\sqrt{3} = U + V\sqrt{3}$	E1	Clearly shown	
				3
(iii)	Diagram	B1	U and V correct with labels and arrows	
				1
(iv)	ac moments about C			
	$75 \times 2\cos 30 + 3.5V\cos 30 - 3.5U\cos 60 = 0$	M1	Moments equation with resolution. Accept term missing	
		B1	At least two terms correct (condone wrong signs)	
	$\frac{300}{7}\sqrt{3} = U - V\sqrt{3}$	A1	Accept any form	
	,			
	Solving for <i>U</i> and <i>V</i>	M1	Any method to eliminate one variable	
	$U = \frac{360\sqrt{3}}{7} (= 89.0768)$	A1	Accept any form and any reasonable accuracy	
	$V = \frac{60}{7}$ (= 8.571428)	F1	Accept any form and any reasonable accuracy	
	1		[Either of <i>U</i> and <i>V</i> is cao. FT the other]	
	Resolve \rightarrow on BC			
	F = U	M1		
	so frictional force is $\frac{360\sqrt{3}}{7}$ N	F1		
	(= 89.1 N (3 s. f.))			
				8
				1

Q 3		mark		Sub
(a)	$20000 = (R + 900g \times 0.1) \times 16$	M1 B1 A1	Use of $P = Fv$, may be implied. Correct weight term All correct	
	<i>R</i> = 368 so 368 N	A1		4
(b) (i)	$F_{\rm max} = \mu mg \cos \alpha$ Force down slope is weight cpt $mg \sin \alpha$	B1 B1	Correct expression for F_{max} or wt cpt down slope (may be implied and in any form) Identifying $\sin \alpha$ as $\frac{5}{13}$ or equivalent	
	Require $\mu mg \cos \alpha \ge mg \sin \alpha$			
	so $\mu \ge \tan \alpha = \frac{5}{12}$	E1	Proper use of $F \leq \mu R$ or equivalent.	
			[$\mu = \tan \alpha$ used WW; SC1]	3
(ii)	either $0.5 \times 11 \times v^2$	M1	Use of work energy with at least three required terms attempted	
	$=11g \times 1.5 \times \frac{5}{13} + 0.2 \times 11g \times 1.5 \times \frac{12}{13} + 9$	B1	Any term RHS. Condone sign error.	
		B1 A1	Another term RHS. Condone sign error. All correct . Allow if trig consistent but wrong	
	$v^2 = 18.3717$ v = 4.2862 so 4.29 m s ⁻¹ (3 s. f.) or + ve up the slope	A1	сао	5
	$-11g \times \frac{5}{13} - 0.2 \times 11g \times \frac{12}{13} - 6 = 11a$	M1	Use of N2L	
	15 15	B1	Any correct term on LHS	
	a = - 6.1239 m s⁻² √² = - 3a	A1 M1	use of appropriate uvast	
	$v = 4.286 \text{ m s}^{-1}$	A1	c.a.o.	
(iii)	continued overleaf			

Mark Scheme

3	continued			
(iii)	either Extra GPE balances WD against resistances $mgx \sin \alpha$ = 6(x+3)+0.2×11g×cos α (x+3) x = 4.99386 so 4.99 m (3 s. f.)	M1 B1 B1 A1 A1	Or equivalent One of 1 st three terms on RHS correct Another of 1 st 3 terms on RHS correct All correct. FT their v if used. cao.	6
	or $0.5 \times 11 \times 18.3717$ $= (1.5+x) \times 11g \times \frac{5}{13} - 6(1.5+x)$	M1 B1 B1	Allow 1 term missing KE. FT their v Use of 1.5 + x (may be below)	
	$-(1.5+x) \times 0.2 \times 11g \times \frac{12}{13}$ x = 4.99386 so 4.99 m (3 s. f.) or	B1 A1 A1	WD against friction All correct cao.	
	+ ve down the slope $11g \times \frac{5}{13} - 0.2 \times 11g \times \frac{12}{13} - 6 = 11a$ $a = 1.4145m s^{-2}$ $4.286^2 = 2a(1.5+x)$	M1 A1 A1 M1	N2L with all terms present all correct except condone sign errors use of appropriate <i>uvast</i>	
	<i>x</i> = 4.99	B1 A1	for (1.5 + <i>x</i>) (may be implied) c.a.o.	18

June 2006

Q 4		mark		Sub
(i)	$100\left(\frac{\overline{x}}{\overline{y}}\right) = 10\left(\frac{5}{0}\right) + 30\left(\frac{10}{15}\right) + 30\left(\frac{20}{15}\right) + 30\left(\frac{25}{30}\right)$	M1 B1 B1	Correct method for c.m. Total mass correct One c.m. on RHS correct [If separate components considered, B1 for 2 correct]	
	$100\left(\frac{\overline{x}}{\overline{y}}\right) = \begin{pmatrix} 1700\\1800 \end{pmatrix}$ $\overline{x} = 17$ $\overline{y} = 18$	A1 A1	cao cao. [Allow SC 4/5 for $\overline{x} = 18$ and $\overline{y} = 17$]	5
(ii)	(17,18,20)	B1 B1	<i>x</i> - and <i>y</i> - coordinates. FT from (i). <i>z</i> coordinate	2
(iii)	cw moments about horizontal edge thro' D x component $P \times 20 - 60 \times (20 - 17) = 0$ P = 9	M1 B1 B1 A1	Or equivalent with all forces present One moment correct (accept use of mass or length) correct use of their \overline{x} in a distance FT only their \overline{x}	4
(iv)	Diagram	B1	Normal reaction must be indicated acting vertically upwards at edge on Oz and weight be in approximately the correct place.	1
(v)	On point of toppling ac moments about edge along Oz $30 \times Q - 60 \times 17 = 0$ Q = 34 Resolving horizontally $F = Q$ As 34 > 30, slips first	M1 B1 F1 B1 B1	Or equivalent with all forces present Any moment correct (accept use of mass or length) FT only their \overline{x} FT their Q correctly argued.	5 17

Jan	2007

Q 1		mark		sub
(i)	before $v_2 \text{ m s}^{-1}$ $v_1 \text{ m s}^{-1}$			
	$10 \times 0.5 = 0.5v_2 + 29.5v_1$ $\frac{v_1 - v_2}{0 - 10} = -0.8$ $v_1 = 0.3 \text{ so } V_1 = 0.3$ $v_2 = -7.7 \text{ so } V_2 = 7.7 \text{ m s}^{-1}$ in opposite to original direction	M1 A1 M1 A1 A1 A1 F1	PCLM and two terms on RHS All correct. Any form. NEL Any form Speed. Accept ±. Must be correct interpretation of clear working	7
(ii) (A)	$10 \times 0.5 = 30V$ so $V = \frac{1}{6}$	M1 A1 A1	PCLM and coalescence All correct. Any form. Clearly shown. Accept decimal equivalence. Accept no direction.	3
(B)	Same velocity No force on sledge in direction of motion	E1 E1	Accept speed	2
(iii)	before after 2 m s^{-1} 2 m s^{-1} 39.5 kg $0.5 kgu$	B1		
	$2 \times 40 = 0.5u + 39.5V$ u - V = 10 Hence $V = 1.875$	M1 A1 B1 A1 17	PCLM, masses correct Any form May be seen on the diagram. Accept no reference to direction.	5

Jan 2007

(i) $X = R \cos 30$ $Y + R \sin 30 = L$ (2)(1) (2)BI M1 A1Attempt at resolution(ii)ac moments about A $X = 2L \frac{\sqrt{3}}{2}$ so $X = \sqrt{3}L$ $X = 2L \frac{\sqrt{3}}{2}$ so $X = \sqrt{3}L$ $Y + 2L \times \frac{1}{2} = L$ so $Y + L = L$ and $Y = 0$ B1 E1Subst their $R = 2L$ into their (1) or (2) Clearly shown(iii)(Below all are taken as tensions c. g. T_{AB} in ABB1 B1 B1Attempt at all forces (allow one omitted) Correct. Accept internal forces set as tensions or thrusts or a mix(iv) \downarrow A $T_{AD} - Cos 30 (-Y) = 0$ so $T_{AD} = 0$ M1 E1Vert equilibrium at A attempted. $Y = 0$ need not be explicit(iv) \downarrow A $T_{AD} - X = 0$ so $T_{AB} = \sqrt{3}L$ (T) So $T_{AD} = 0$ M1 B1Vert equilibrium at A attempted P1 or equived(v)Consider the equilibrium at pin-joints So $T_{AB} - X = 0$ so $T_{AB} = \sqrt{3}L$ (C) B1M1 B1 D1 or requiredAt least one relevant equilibrium their equation. (C) not required. D1 or equived to not condone inconsister signs even if right answer obtained. (T) not required. F1 Their T_{CB} or equiv but do not condone inconsister signs even if right answer obtained. Their diagram F1 Their T_{CB} or equive but do not condone inconsistent signs even if right answer obtained. (T) not required.(vi) \downarrow B $T_{BD} \cos 30 + T_{BE} \cos 30 = 0$ so $T_{BD} = -T_{BE}$ so mag equal and opp senseM1 E0(vii) \downarrow B $T_{BD} \cos 30 + T_{BE} \cos 30 = 0$ so $T_{BD} = -T_{BE}$ so mag equal and opp senseM1 E0	Q 2		mark	comment	sub
Subst in (1) and (2) $X = 2L \frac{\sqrt{3}}{2}$ so $X = \sqrt{3}L$ M1 E1Subst their $R = 2L$ into their (1) or (2) Clearly shown(iii) $Y + 2L \times \frac{1}{2} = L$ so $Y + L = L$ and $Y = 0$ E1Clearly shown4(iii)(Below all are taken as tensions e. g. T_{AB} in ABB1 B1Attempt at all forces (allow one omitted) Correct. Accept internal forces set as tensions or thrusts or a mix2(iv) \downarrow A $T_{AD} \cos 30 (-Y) = 0$ so $T_{AD} = 0$ M1 E1Vert equilibrium at A attempted. $Y = 0$ need not be explicit(v)Consider the equilibrium at pin-joints A \rightarrow $T_{AB} - X = 0$ so $T_{AB} = \sqrt{3}L$ (T) C \downarrow $L + T_{CR} \cos 30 = 0$ so $T_{CR} = -\frac{2L}{\sqrt{3}}$ so $\frac{2L}{\sqrt{3}} = \frac{2L\sqrt{3}}{3}$ (C)B1 B1 Or equiv from their diagram F1 their T_{CR} or equiv but do not condone inconsistent signs even if right answer obtained. (T) not required. Or equiv form their diagram F1 their T_{CR} or equiv but do not condone inconsistent signs even if right answer obtained. (T) not required. T and C consistent with their answers and their diagram(vi) \downarrow B $T_{BD} \cos 30 + T_{BE} \cos 30 = 0$ so $T_{BD} = -T_{BE}$ so mag equal and opp senseM1 M1 Resolve vert at B A statement requiredM1 A statement required	(i)		M1	Attempt at resolution	3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(ii)	ac moments about A $R - 2L = 0$	B1		
YYY <th< td=""><td></td><td>Subst in (1) and (2)</td><td>M1</td><td>Subst their $R = 2L$ into their (1) or (2)</td><td></td></th<>		Subst in (1) and (2)	M 1	Subst their $R = 2L$ into their (1) or (2)	
$\begin{array}{ c c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $		$X = 2L\frac{\sqrt{3}}{2} \text{ so } X = \sqrt{3}L$	E1	Clearly shown	
		$Y + 2L \times \frac{1}{2} = L$ so $Y + L = L$ and $Y = 0$	E1	Clearly shown	4
$ \begin{array}{ c c c c c c } & \downarrow & A & T_{AD}\cos 30 \ (-Y) = 0 & & M1 \\ & so & T_{AD} = 0 & & E1 & & need not be explicit \\ \hline & ed not be explicit & & 2 \\ \hline & ed not be explicit & & 2 \\ \hline & ed not be explicit & & E1 & & ed not be explicit \\ \hline & ed not be explicit & & E1 & & ed not be explicit \\ \hline & ed not be explicit & & E1 & & ed not be explicit \\ \hline & ed not be explicit & & E1 & & ed not be explicit \\ \hline & A \rightarrow & T_{AB} - X = 0 \ so & T_{AB} = \sqrt{3}L & (T) & B1 & & (T) \ not required & & & \\ \hline & A \rightarrow & T_{AB} - X = 0 \ so & T_{AB} = \sqrt{3}L & (T) & B1 & & (T) \ not required & & & \\ \hline & C & \downarrow & L + T_{CE}\cos 30 = 0 & & & \\ \hline & so & T_{CE} = \frac{-2L}{\sqrt{3}} \ so & \frac{2L}{\sqrt{3}} \left(= \frac{2L\sqrt{3}}{3} \right) \ (C) & & B1 & & Accept any form following from their \\ \hline & equation. \ (C) \ not required. & & \\ \hline & C & \leftarrow & T_{BC} + T_{CE}\cos 60 = 0 & & \\ \hline & so & T_{BC} = -\left(-\frac{2\sqrt{3}L}{3} \right) \times \frac{1}{2} = \frac{\sqrt{3}L}{3} \ (T) & & B1 & \\ \hline & so & T_{BC} = -\left(-\frac{2\sqrt{3}L}{3} \right) \times \frac{1}{2} = \frac{\sqrt{3}L}{3} \ (T) & & B1 & \\ \hline & required. & & \\ \hline & req req required. &$	(iii)			Correct. Accept internal forces set as	
$\begin{array}{ c c c c c } A \rightarrow & T_{AB} - X = 0 \text{ so } T_{AB} = \sqrt{3}L (T) \\ C \downarrow & L + T_{CE} \cos 30 = 0 \\ \text{so } T_{CE} = \frac{-2L}{\sqrt{3}} \text{ so } \frac{2L}{\sqrt{3}} \left(= \frac{2L\sqrt{3}}{3} \right) (C) \\ C \leftarrow & T_{BC} + T_{CE} \cos 60 = 0 \\ \text{so } T_{BC} = -\left(-\frac{2\sqrt{3}L}{3} \right) \times \frac{1}{2} = \frac{\sqrt{3}L}{3} (T) \\ \end{array} \begin{array}{l} B1 \\ B1 \\ B1 \\ B1 \\ C \end{array} \begin{array}{l} \text{Creation} \text{ required} \\ B1 \\ \text{Creation} \text{ required} \\ B2 \\ \text{Creation} \text{ required} \\ B1 \\ Cre$	(iv)				2
$ \begin{array}{ c c c c c c c c } C & \downarrow & L+T_{CE}\cos 30 = 0 & & B1 & Or equiv from their diagram \\ so & T_{CE} = \frac{-2L}{\sqrt{3}} so & \frac{2L}{\sqrt{3}} \left(= \frac{2L\sqrt{3}}{3} \right) (C) & B1 & Accept any form following from their \\ C & \leftarrow & T_{BC} + T_{CE}\cos 60 = 0 & & B1 & Or equiv from their diagram \\ so & T_{BC} = -\left(-\frac{2\sqrt{3}L}{3} \right) \times \frac{1}{2} = \frac{\sqrt{3}L}{3} & (T) & B1 & B1 & B1 \\ so & T_{BC} = -\left(-\frac{2\sqrt{3}L}{3} \right) \times \frac{1}{2} = \frac{\sqrt{3}L}{3} & (T) & B1 & B1 & B1 & B1 \\ \end{array} $	(v)	Consider the equilibrium at pin-joints	M1	At least one relevant equilib attempted	
$So T_{CE} = \frac{-2L}{\sqrt{3}} so \frac{2L}{\sqrt{3}} \left(= \frac{2L\sqrt{3}}{3} \right) (C)$ $C \leftarrow T_{BC} + T_{CE} \cos 60 = 0$ $So T_{BC} = -\left(-\frac{2\sqrt{3}L}{3} \right) \times \frac{1}{2} = \frac{\sqrt{3}L}{3} (T)$ $B1$ $Accept any form following from their equation. (C) not required. Or equiv from their diagram FT their T_{CE} or equiv but do not condone inconsistent signs even if right answer obtained. (T) not required. T and C consistent with their answers and their diagram 7 $ (vi) $V = B T_{BD} \cos 30 + T_{BE} \cos 30 = 0$ $So T_{BD} = -T_{BE} so mag equal and opp sense$ $M1$ $Resolve vert at B$ $A statement required$ 2		A \rightarrow $T_{AB} - X = 0$ so $T_{AB} = \sqrt{3}L$ (T)	B1	(T) not required	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			B1	Or equiv from their diagram	
C \leftarrow $T_{\rm BC} + T_{\rm CE} \cos 60 = 0$ soB1 soOr equiv from their diagram FT their $T_{\rm CE}$ or equiv but do not condone inconsistent signs even if right answer obtained. (T) not required. T and C consistent with their answers and their diagram(vi) \downarrow B $T_{\rm BD} \cos 30 + T_{\rm BE} \cos 30 = 0$ soM1 E1Resolve vert at B E17(vi) \downarrow B $T_{\rm BD} = -T_{\rm BE}$ so mag equal and opp senseM1 E1Resolve vert at B A statement required2		so $T_{\rm CE} = \frac{-2L}{\sqrt{3}}$ so $\frac{2L}{\sqrt{3}} \left(= \frac{2L\sqrt{3}}{3} \right)$ (C)	B1	Accept any form following from their	
so $T_{BC} = -\left(-\frac{2\sqrt{3L}}{3}\right) \times \frac{1}{2} = \frac{\sqrt{3L}}{3}$ (T) F1 inconsistent signs even if right answer obtained. (T) not required. T and C consistent with their answers and their diagram (vi) \downarrow B $T_{BD} \cos 30 + T_{BE} \cos 30 = 0$ so $T_{BD} = -T_{BE}$ so mag equal and opp sense M1 Resolve vert at B E1 A statement required 2		$C \leftarrow T_{BC} + T_{CE} \cos 60 = 0$	B1		
(vi) $\begin{array}{c} F_{1} \\ F_{2} \\ F_{3} \\ F_{4} \\ F$		so $T_{\rm rc} = -\left(-\frac{2\sqrt{3}L}{2}\right) \times \frac{1}{2} = \frac{\sqrt{3}L}{2}$ (T)	B1		
(vi) \downarrow B $T_{BD} \cos 30 + T_{BE} \cos 30 = 0$ so $T_{BD} = -T_{BE}$ so mag equal and opp sense E1 Resolve vert at B E1 A statement required 2				obtained. (T) not required. T and C consistent with their answers and	
$\begin{array}{c c c c c c c c c } & \downarrow & B & T_{BD}\cos 30 + T_{BE}\cos 30 = 0 & M1 & Resolve vert at B \\ so & T_{BD} = -T_{BE} & so mag equal and opp sense & E1 & A statement required & 2 \\ \end{array}$					7
	(vi)				
			20		2

Q 3		mark		sub
(i)	(10, 2, 2.5)	B1		1
(ii)	By symmetry $\overline{x} = 10,$ $\overline{y} = 2$ $(240+80)\overline{z} = 80 \times 0 + 240 \times 2.5$ so $\overline{z} = 1.875$	B1 B1 B1 M1 A1	Total mass correct Method for c.m. Clearly shown	5
(iii)	$\overline{x} = 10 \text{ by symmetry}$ $(320 + 80) \left(\frac{\overline{x}}{\overline{y}} \right) = 320 \left(\begin{array}{c} 10 \\ 2 \\ 1.875 \end{array} \right) + 80 \left(\begin{array}{c} 10 \\ 4 \\ 3 \end{array} \right)$	E1 M1 B1	Could be derived Method for c.m. y coord c.m. of lid	
	$\overline{y} = 2.4$ $\overline{z} = 2.1$	B1 E1 E1	z coord c.m. of lid shown shown	6
(iv)	$\frac{2.4 \text{ cm}}{12.1 \text{ cm}} + \frac{5 \text{ cm}}{5 \text{ cm}} + \frac{5 \text{ cm}}{40 \text{ N}}$ c.w moments about X $40 \times 0.024 \cos 30 - 40 \times 0.021 \sin 30$ = 0.41138 so 0.411 N m (3 s. f.)	B1 B1 B1 E1	Award for correct use of dimensions 2.1 and 2.4 or equivalent 1 st term o.e. (allow use of 2.4 and 2.1) 2 nd term o.e. (allow use of 2.4 and 2.1) Shown [Perpendicular method: M1 Complete method: A1 Correct lengths and angles E1 Shown]	4
(v)	0.41138 0.05P = 0 P = 8.22768 so 8.23 (3 s. f.)	M1 A1	Allow use of 5 Allow if cm used consistently	2
		18		

Q 4		mark		sub
(i)	$F_{\text{max}} = \mu R$ $R = 2g \cos 30$ so $F_{\text{max}} = 0.75 \times 2 \times 9.8 \times \cos 30 = 12.730$	M1 B1	Must have attempt at <i>R</i> with <i>mg</i> resolved	
	so 12.7 N (3 s. f.)	A1	[Award 2/3 retrospectively for limiting friction seen below]	
	either Weight cpt down plane is 2 <i>g</i> sin 30 = 9.8 N so no as 9.8 < 12.7 or	B1 E1	The inequality must be properly justified	
	Slides if $\mu < \tan 30$ But 0.75 > 0.577 so no	B1 E1	The inequality must be properly justified	5
(ii) (A)	Increase in GPE is			
	$2 \times 9.8 \times (6 + 4\sin 30) = 156.8 \text{ J}$	M1 B1 A1	Use of mgh 6 + 4 sin 30	3
(B)	WD against friction is $4 \times 0.75 \times 2 \times 9.8 \times \cos 30 = 50.9222$ J	M1 A1	Use of $WD = Fd$	2
(C)	Power is 10×(156.8 + 50.9222)/60	M1	Use $P = WD/t$	
	= 34.620 so 34.6 W (3 s. f.)	A1		2
(iii)	$0.5 \times 2 \times 9^2$	M1	Equating KE to GPE and WD term. Allow sign errors and one KE term omitted. Allow 'old' friction as well.	
	$= 2 \times 9.8 \times (6 + x \sin 30)$			
	$+ 0.5 \times 2 \times 4^{2}$ -90	B1 A1	Both KE terms. Allow wrong signs. All correct but allow sign errors	
		A1	All correct, including signs.	
	so <i>x</i> = 3.8163 so 3.82 (3 s. f.)	A1	cao	5
		17		

Q1				
(a) (i)	Impulse has magnitude $2 \times 9 = 18$ N s speed is $\frac{18}{6} = 3$ m s ⁻¹ .	B1 B1		2
(ii)	PCLM \rightarrow 3×6-1×2=8v v = 2 so 2 m s ⁻¹ in orig direction of A	M1 A1 E1	Use of PCLM + combined mass RHS All correct Must justify direction (diag etc)	3
(iii)	$\rightarrow 2 \times 2 - 2 \times -1 = 6$ N s	M1 A1	Attempted use of <i>m</i> v - <i>m</i> u for 6 N s dir specified (accept diag)	2
(iv) (A)	$2 \text{ ms}^{-1} \qquad 1.8 \text{ m s}^{-1}$ $AB \qquad C$ $v \text{ ms}^{-1} \qquad 1.9 \text{ m s}^{-1}$	B1	Accept masses not shown	1
(B)	PCLM \rightarrow 2×8+10×1.8 = 8v+10×1.9 v = 1.875	M1 A1 A1	PCLM. All terms present Allow sign errors only	3
(C)	NEL $\frac{1.9 - 1.875}{1.8 - 2} = -e$ so $e = 0.125$	M1 A1 F1	Use of NEL with their v Any form. FT their v FT their v (only for $0 < e \le 1$)	3
(b)	Using $v^2 = u^2 + 2as$ $v = \sqrt{2 \times 10 \times 9.8} = 14$ rebounds at $14 \times \frac{4}{7}$ $= 8 \text{ m s}^{-1}$	B1 M1 F1	Allow ±14 Using their <i>vertical</i> component FT from their 14. Allow ±	
	No change to the horizontal component Since both horiz and vert components are 8 m s^{-1} the angle is 45°	B1 A1	Need not be explicitly stated cao	5
		19		

Q 2				
(i)	$\theta = \frac{\pi}{2}$	B1		
	gives CG = $\frac{8\sin\frac{\pi}{2}}{\frac{\pi}{2}} = \frac{16}{\pi}$	E1		
	$\left(-\frac{16}{\pi},8\right)$ justified	E1		3
(ii)	$(8\pi + 72) \left(\frac{\overline{x}}{\overline{y}}\right) = 8\pi \left(-\frac{16}{\pi}\right) + 72 \left(\frac{36}{0}\right)$ $\left(\frac{\overline{x}}{\overline{y}}\right) = \left(\frac{25.3673}{2.06997}\right) = \left(\frac{25.37}{2.07}\right) (4 \text{ s. f.})$	M1 B1 A1 E1 E1	Method for c.m. Correct mass of 8 . or equivalent 1 st RHS term correct 2 nd RHS term correct	5
	(y) (2.00997) (2.07)	LI	[If separate cpts award the A1s for <i>x</i> - and <i>y</i> - cpts correct on RHS]	6
(iii)	A (13.93) A (25.37) G (25.37)	B1	General position and angle (lengths need not be shown)	
	$\tan \alpha = \frac{13.93}{25.37}$	M1 M1 A1	Angle or complement attempted. arctan or equivalent. Attempt to get 16 – 2.0699 Obtaining 13.93 cao Accept use of 2.0699 but not 16.	
	<i>α</i> = 28.7700 so 28.8° (3 s. f.)	A1	cao	5
(iv)	c. w. moments about A $12 \times 13.93 - 16F = 0$	M1 A1	[FT use of 2.0699] Moments about any point, all forces present	
	so $F = 10.4475$	A1	(1.5525 if 2.0699 used)	3
		17		

Q 3				
(i)	Moments c.w. about B $200 \times 0.6 - 0.8R_A = 0$ $R_A = 150$ so 150 N Resolve or moments $R_B = 50$ so 50 N	M1 A1 M1 F1	Accept about any point. Allow sign errors.	4
(ii)	Moments c.w. about D $-0.8R_{\rm C} + 1.2 \times 200 = 0$ $R_{\rm C} = 300 \uparrow$ Resolve or moments $R_{\rm D} = 100 \downarrow$	M1 A1 M1 A1 E1	Or equiv. Accept about any point. All terms present. No extra terms. Allow sign errors. Neglect direction Or equiv. All terms present. No extra terms. Allow sign errors. Neglect direction Both directions clearly shown (on diag)	5
(iii)	Moments c.w. about P $0.4 \times 200 \cos \alpha - 0.8R_Q = 0$ $R_Q = 96 \text{ so } 96 \text{ N}$ resolve perp to plank $R_P = 200 \cos \alpha + R_Q$ $R_P = 288 \text{ so } 288 \text{ N}$	M1 A1 A1 M1 A1 A1 A1	Or equiv. Must have some resolution. All terms present. No extra terms. Allow sign errors. Correct [No direction required but no sign errors in working] Or equiv. Must have some resolution. All terms present. No extra terms. Allow sign errors. Correct [No direction required but no sign errors in working]	6
(iv)	Need one with greatest normal reaction So at P Resolve parallel to the plank $F = 200 \sin \alpha$ so $F = 56$ $\mu = \frac{F}{R}$ $= \frac{56}{288} = \frac{7}{36}$ (= 0.194 (3 s. f.))	B1 B1 M1 A1	FT their reactions Must use their <i>F</i> and <i>R</i> cao	4
		19		

June 2007

Q 4				
(i)	either $0.5 \times 20 \times 0.5^2 + 20 \times 9.8 \times 4$ = 786.5 J or $a = \frac{1}{32}$ $T - 20g = 20 \times \frac{1}{32}$ T = 196.625 WD is $4T = 786.5$ so 786.5 J	M1 B1 B1 A1 B1 M1 A1 A1	KE or GPE terms KE term GPE term cao N2L. All terms present. cao	4
(ii)	$20g \times 0.5 = 10g \text{ so } 98 \text{ W}$	M1 A1 A1	Use of $P = Fv$ or $\Delta WD / \Delta t$ All correct	3
(iii)	GPE lost is $35 \times 9.8 \times 3 = 1029$ J KE gained is $0.5 \times 35 \times (3^2 - 1^2) = 140$ J so WE gives WD against friction is 1029 - 140 = 889 J	B1 M1 A1 M1 A1	ΔKE The 140 J need not be evaluated Use of WE equation cao	5
(iv)	either $0.5 \times 35 \times 3^{2} + 35 \times 9.8 \times 0.1x = 150x$ x = 1.36127 so 1.36 m (3 S. F.) or $35g \times 0.1 - 150 = 35a$ a = -3.3057 0 = 9 - 2ax x = 1.36127 so 1.36 m (3 S. F.)	M1 B1 B1 A1 A1 M1 A1 A1 M1 A1	WE equation. Allow 1 missing term. No extra terms. One term correct (neglect sign) Another term correct (neglect sign) All correct except allow sign errors cao Use of N2L. Must have attempt at weight component. No extra terms. Allow sign errors, otherwise correct cao Use of appropriate <i>uvast</i> or sequence cao	
		17		5

Mark Scheme

January 2008

VI	ar	'K	S	cr	٦e	en	ne

Mechanics 2 4762

Q1		Mark	Comment	Sub
(a) (i)	either In direction of the force I = Ft = mv so $1500 \times 8 = 4000v$ giving $v = 3$ so 3 m s^{-1} or N2L gives $a = \frac{1500}{4000}$ $v = 0 + \frac{1500}{4000} \times 8$	Mark M1 A1 A1 M1 A1	Use of $Ft = mv$ Appropriate use of N2L and <i>uvast</i>	300
	4000 giving v = 3 so 3 m s ⁻¹	A1		3
(ii)	before 500 4000 after 500 4000 $V_{\rm S} {\rm m} {\rm s}^{-1}$			
	PCLM $12000 = 4000V_{R} + 500V_{S}$ so $24 = 8V_{R} + V_{S}$	M1 A1	Appropriate use of PCLM Any form	
	NEL $\frac{V_{\rm S} - V_{\rm R}}{0 - 3} = -0.2$	M1	Appropriate use of NEL	
	so $V_{\rm S} - V_{\rm R} = 0.6$ Solving $V_{\rm R} = 2.6, V_{\rm S} = 3.2$ so ram 2.6 m s ⁻¹ and stone 3.2 m s ⁻¹	A1 A1 F1	Any form Either value	6
(iii)	$0.5 \times 4000 \times 3^2 - 0.5 \times 4000 \times 2.6^2 - 0.5 \times 500 \times 3.2^2$	M1 B1	Change in KE. Accept two terms Any relevant KE term correct (FT their speeds)	
	= 1920 J	A1	cao	3
(b)	see over			

()	72i N s	B1		
	$8(9\cos 60i + 9\sin 60j)$ = (36i + 36 $\sqrt{3}j$) N s	E1	Neglect units but must include direction Evidence of use of 8 kg , 9 m s ⁻¹ and 60°	2
	72 i + (36 i + 36 $\sqrt{3}$ j) = 12(<i>u</i> i + <i>v</i> j) Equating components 72 + 36 = 12 <i>u</i> so <i>u</i> = 9 36 $\sqrt{3}$ = 12 <i>v</i> so <i>v</i> = 3 $\sqrt{3}$	M1 M1 A1	PCLM. Must be momenta both sides Both	3
	either $4 \times 18 = 8 \times 9$ so equal momenta so $60/2 = 30^{\circ}$ or $\arctan\left(\frac{3\sqrt{3}}{9}\right) = \arctan\left(\frac{1}{\sqrt{3}}\right) = 30^{\circ}$	M1 A1 M1 A1	Must be clear statements cao FT their <i>u</i> and <i>v</i> . cao	2

Q 2		Mark	Comment	Sub
(i) (A)	$0.5 \times 80 \times 3^2 = 360 \text{ J}$	M1 A1	Use of KE	2
(B)	$360 = F \times 12$ so $F = 30$ so 30 N	M1 F1	<i>W</i> = <i>Fd</i> attempted FT their WD	
(ii)	Using the WE equation	M1	Attempt to use the WE equation. Condone one missing term	2
	$0.5 \times 80 \times 10^2 - 0.5 \times 80 \times 4^2$	M1	Δ KE attempted	
	$= 80 \times 9.8 \times h - 1600$ h = 6.32653 so 6.33 (3 s. f.)	B1 A1 A1	1600 with correct sign All terms present and correct (neglect signs) cao	-
(iii) (A)	We have driving force $F = 40$ so $200 = 40v$ and $v = 5$ so 5 m s ⁻¹	B1 M1 A1	May be implied Use of <i>P</i> = <i>Fv</i>	5
(B)	From N2L, force required to give accn is $F-40 = 80 \times 2$ so $F = 200$ $P = 200 \times 0.5 = 100$ so 100 W	M1 A1 A1 M1 A1	Use of N2L with all terms present (neglect signs) All terms correct correct use of P = Fv cao	5
		17		

Q 3		Mark	Comment	Sub
(i)	For \overline{z} $(2 \times 20 \times 100 + 2 \times 50 \times 120)\overline{z}$ $= 2 \times 2000 \times 50 + 2 \times 6000 \times 60$ so $\overline{z} = 57.5$ and $\overline{y} = 0$	M1 B1 B1 A1 B1	Method for c.m. Total mass of 16000 (or equivalent) At least one term correct NB This result is given below. NB This result is given below. Statement (or proof) required. N.B. If incorrect axes specified, award max 4/5	5
(ii)	\overline{y} and \overline{z} are not changed with the folding For \overline{x} $100 \times 120 \times 0 + 2 \times 20 \times 100 \times 10 = 16000\overline{x}$	E1 M1 B1	A statement, calculation or diagram required. Method for the c.m. with the folding Use of the 10	5
	so $\overline{x} = \frac{40000}{16000} = 2.5$	E1	Clearly shown	4
(iii)	Moments about AH. Normal reaction acts through this line	M1 B1	May be implied by diagram or statement	
	c.w. $P \times 120 - 72 \times (20 - 2.5) = 0$ so $P = 10.5$	B1 A1 A1	20–2.5 or equivalent All correct cao	5
(iv)	$F_{\text{max}} = \mu R$ so $F_{\text{max}} = 72\mu$ For slipping before tipping we require	M1 A1	Allow $F = \mu R$ Must have clear indication that this is max F	
	$72\mu < 10.5$ so $\mu < 0.1458333(7_{48})$	M1 A1	Accept \leq . Accept their F_{max} and R . cao	4
		18		

Q 4		Mark	Comment	Sub
(i)	Centre of CE is 0.5 m from D a.c. moment about D $2200 \times 0.5 = 1100$ so 1100 N m c.w moments about D $R \times 2.75 - 1100 = 0$ R = 400 so 400 N	B1 M1 E1 M1 B1 A1	Used below correctly Use of their 0.5 0.5 must be clearly established. Use of moments about D in an equation Use of 1100 and 2.75 or equiv	6
(ii)	c.w moments about D $W \times 1.5 - 1100 - 440 \times 2.75 = 0$ so $W = 1540$	M1 A1 E1	Moments of all relevant forces attempted All correct Some working shown	3
(iii) (A)	c.w. moments about D $1.5 \times 1540 \cos 20 - 1.75T$ $-1100 \cos 20 - 400 \times 2.75 \cos 20 = 0$	M1 M1	Moments equation. Allow one missing term; there must be some attempt at resolution. At least one res attempt with correct length Allow sin $\leftrightarrow \cos$	
	<i>T</i> = 59.0663 so 59.1 N (3 s. f.)	A1 B1 A1 A1	Any two of the terms have cos 20 correctly used (or equiv) 1.75 <i>T</i> All correct cao Accept no direction given	6
(iii) (<i>B</i>)	either Angle required is at 70° to the normal to CE so $T_1 \cos 70 = 59.0663$	B1 M1		
	so $T_1 = 172.698$ so 173 N (3 s.f.) or $400\cos 20 \times 2.75 + 1100\cos 20$ $= 1540\cos 20 \times 1.5 - T\sin 20 \times 1.75$	A1 M1	FT (iii) (A) Moments attempted with all terms present	
	<i>T</i> = 172.698 so 173 N (3s.f.)	A1 A1 18	All correct (neglect signs) FT(iii)(A)	3

Q 1		mark	comment	sub
(a) (i)	In i direction: $6u - 12 = 18$ so $u = 5$ i.e. 5i m s ⁻¹ either In i direction: $0.5v + 12 = 0.5 \times 11$ v = -13 so -13 i m s ⁻¹ or $6 \times 5 + 0.5$ $v = 6 \times 3 + 0.5 \times 11$ v = -13 so -13 i m s ⁻¹	M1 E1 M1 B1 A1 M1 A1 A1	Use of I-M Accept $6u - 12 = 18$ as total working. Accept 5 instead of 5i. Use of I-M Use of + 12i or equivalent Accept direction indicated by any means PCLM Allow only sign errors Accept direction indicated by any means	5
(ii)	Using NEL: $\frac{11-3}{-13-5} = -e$ $e = \frac{4}{9} (0.\dot{4})$	M1 F1 F1	Use of NEL. Condone sign errors but not reciprocal expression FT only their –13 (even if +ve) FT only their –13 and only if –ve (allow 1 s.f. accuracy)	3
(iii)	In i direction: $-2 \times 7 = 0.5v - 0.5 \times 11$ v = -17 so -17 i m s ⁻¹ or -2 i = 0.5 a so $a = -4$ i m s ⁻² $v = 11i - 4i \times 7$ v = -17 so -17 i m s ⁻¹	M1 M1 A1 A1 M1 A1 M1 A1	Use of $I = Ft$ Use of $I = m(v - u)$ For ± 17 cao. Direction (indicated by any means) Use of $F = ma$ For ± 4 Use of uvas t cao. Direction (indicated by any means)	4
(b)	$u \mathbf{i} + e \mathbf{v} \mathbf{j}$ $\tan \alpha = \frac{v}{u}, \ \tan \beta = \frac{e v}{u}$ $\tan \beta = e \left(\frac{v}{u}\right) = e \tan \alpha$	B1 B1 M1 B1 E1	For <i>u</i> For <i>ev</i> Use of tan. Accept reciprocal argument. Accept use of their components Both correct. Ignore signs. Shown. Accept signs not clearly dealt with.	5
		17		5

Mark Scheme

June 2008

PMT

Q 2		mark	comment	sub
(i)	$(2+3\times6)\begin{pmatrix}\bar{x}\\\bar{y}\end{pmatrix} = 6\begin{pmatrix}3\\0\end{pmatrix} + 6\begin{pmatrix}6\\3\end{pmatrix} + 6\begin{pmatrix}3\\6\end{pmatrix} + 2\begin{pmatrix}0\\7\end{pmatrix}$ $20\begin{pmatrix}\bar{x}\\\bar{y}\end{pmatrix} = \begin{pmatrix}18+36+18\\18+36+14\end{pmatrix} = \begin{pmatrix}72\\68\end{pmatrix}$ $\bar{x} = 3.6$ $\bar{y} = 3.4$	M1 B1 B1 E1 A1	Method for c.m. Total mass correct For any of the 1 st 3 RHS terms For the 4 th RHS term cao [If separate cpts, award the 2 nd B1 for 2 <i>x</i> - terms correct and 3 rd B1 for 2×7 in <i>y</i> term]	6
(ii)	$arctan\left(\frac{3.6}{2+(6-3.4)}\right) = arctan\left(\frac{3.6}{4.6}\right)$ so 38.047 so 38.0° (3 s. f.)	B1 B1 M1 B1 A1	Diagram showing G vertically below D 3.6 and their 3.4 correctly placed (may be implied) Use of arctan on their lengths. Allow reciprocal of argument. Some attempt to calculate correct lengths needed 2 + (6 - their 3.4) seen cao	5
(iii)	moments about D $5 \times 3.6 = 6 \times T_{BP}$ so tension in BP is 3 N Resolve vert: $3 + T_{DQ} = 5$ so tension in DQ is 2 N	M1 F1 M1 F1	moments about D. No extra forces FT their values if calc 2nd Resolve vertically or moments about B. FT their values if calc 2nd	4
(iv)	We require x-cpt of c.m. to be zero either $(20+L)\bar{x} = 20 \times 3.6 - \frac{1}{2}L^2$ or $2 \times 6 \times (0.5 \times 6) + 6 \times 6 - 0.5 \times L^2 = 0$ L = 12	M1 B1 A1 A1	A method to achieve this with all cpts For the $0.5 \times L^2$ All correct	4
		19		

PMT

Q 3		mark	comment	sub
(a) (i)	$\begin{array}{c} T_{AD} \\ T_{AD} \\ T_{BD} \\ T_{AB} \\ L N \\ T_{BC} \\$	B1 B1	Internal forces all present and labelled All forces correct with labels and arrows (Allow the internal forces set as tensions, thrusts or a mixture)	2
(ii)	A ↑ $T_{AD} \sin 30 - L = 0$ so $T_{AD} = 2L$ so $2L$ N (T) A → $T_{AB} + T_{AD} \cos 30 = 0$ so $T_{AB} = -\sqrt{3}L$ so $\sqrt{3}L$ N (C) B ↑ $T_{BD} \sin 60 - 3L = 0$ so $T_{BD} = 2\sqrt{3}L$ so $2\sqrt{3}L$ N (T) B → $T_{BC} + T_{BD} \cos 60 - T_{AB} = 0$ so $T_{BC} = -2\sqrt{3}L$ so $2\sqrt{3}L$ N (C)	M1 A1 F1 M1 A1 F1 E1	Equilibrium equation at a pin-joint attempted 1 st ans. Accept + or –. Second equation attempted 2 nd ans. FT any previous answer(s) used. Third equation attempted 3 rd ans. FT any previous answer(s) used. Fourth equation attempted 4 th ans. FT any previous answer(s) used. All T/C consistent [SC 1 all T/C correct WWW]	9
(b)	Leg QR with frictional force $F \leftarrow$ moments c.w. about R $U \times 2l \sin 60 - Wl \cos 60 = 0$ Horiz equilibrium for QR F = U Hence $\frac{1}{2}W = \sqrt{3}F$ and so $F = \frac{\sqrt{3}}{6}W$	M1 A1 M1 E1 M1 E1	Accept only 1 leg considered (and without comment) Suitable moments equation. Allow 1 force omitted a.c. moments c.w. moments A second correct equation for horizontal or vertical equilibrium to eliminate a force (U or reaction at foot) [Award if correct moments equation containing only <i>W</i> and <i>F</i>] * This second equation explicitly derived Correct use of 2 nd equation with the moments equation Shown. CWO but do not penalise * again.	7
		18		/

Mark Scheme

Q 4		mark	comment	sub
(a) (i)	Tension is perp to the motion of the sphere (so WD, $Fd \cos \theta = 0$)	E1		1
(ii)	Distance dropped is $2-2\cos 40 =$ 0.467911 GPE is <i>mgh</i> so $0.15 \times 9.8 \times 0.467911 = 0.687829 J$	M1 E1 M1 B1	Attempt at distance with resolution used. Accept $sin \leftrightarrow cos$ Accept seeing 2-2cos40 Any reasonable accuracy	4
(iii)	$0.5 \times 0.15 \times v^2 = 0.687829$ so $v = 3.02837$ so 3.03 m s ⁻¹ (3 s. f.)	M1 F1	Using KE + GPE constant FT their GPE	2
(iv)	$\frac{1}{2} \times 0.15 (v^2 - 2.5^2)$	M1	Use of W-E equation (allow 1 KE term or GPE term omitted)	
		B1	KE terms correct	
	$= 0.687829 0.6 \times \frac{40}{360} \times 2\pi \times 2$	M1	WD against friction	
	v = 2.06178 so 2.06 m s ⁻¹ (3 s. f.)	A1 A1	WD against friction correct (allow sign error) cao	5
(b)	N2L down slope: $3g\sin 30 - F = 3 \times \frac{1}{8}g$	M1 A1	Must have attempt at weight component Allow sign errors.	
	so $F = \frac{9g}{8}$ (= 11.025)	A1		
	$R = 3g \times \frac{\sqrt{3}}{2}$ (= 25.4611)	B1		
	$\mu = \frac{F}{R} = \frac{\sqrt{3}}{4}$ (= 0.43301)	M1	Use of $F = \mu R$	
	<i>K</i> 4	E1	Must be worked precisely	6
		18		

4762 Mechanics 2

Q 1		Mark		Sub
(i)	either	M1	Use of $I = Ft$	
	$m \times 2u = 5F$ so $F = 0.4mu$ in direction of the velocity	A1 A1	Must have reference to direction. Accept diagram.	
	or	M1	Use of suvat and N2L	
	$a = \frac{2u}{5}$	A1	May be implied	
	so $F = 0.4mu$ in direction of the velocity	A1	Must have reference to direction. Accept diagram.	3
(ii)	PCLM $\rightarrow 2um + 3um = mv_p + 3mv_Q$ NEL $\rightarrow v_Q - v_p = 2u - u = u$ Energy $\frac{1}{2}m \times (2u)^2 + \frac{1}{2}(3m) \times u^2$	M1	For 2 equns considering PCLM, NEL or Energy	3
	$= \frac{1}{2}m \times v_{p}^{2} + \frac{1}{2}(3m) \times v_{Q}^{2}$ Solving to get both velocities $v_{Q} = \frac{3u}{2}$	A1 A1 M1 E1	One correct equation Second correct equation Dep on 1 st M1. Solving pair of equations. If Energy equation used, allow 2 nd root discarded without comment.	
	$v_P = \frac{u}{2}$	A1	[If AG subst in one equation to find other velocity, and no more, max SC3]	6
(iii)	either			
	After collision with barrier $v_Q = \frac{3eu}{2} \leftarrow$	B1	Accept no direction indicated	
	so $\rightarrow m\frac{u}{2} - 3m\frac{3eu}{2} = -4m\frac{u}{4}$	M1	PCLM	
		A1 A1	LHS Allow sign errors. Allow use of $3mv_Q$. RHS Allow sign errors	
	so $e = \frac{1}{3}$	A1		
	At the barrier the impulse on Q is given by $\rightarrow 3m\left(-\frac{3u}{2} \times \frac{1}{3} - \frac{3u}{2}\right)$	M1	Impulse is $m(v - u)$	
		F1	$\pm \frac{3u}{2} \times \frac{1}{3}$	
	so impulse on Q is $-6mu \rightarrow$ so impulse on the barrier is $6mu \rightarrow$	F1 A1	Allow \pm and direction not clear. FT only <i>e</i> . cao. Direction must be clear. Units not required.	9
		18		7

t				1
Q 1	continued	mark		sub
(iii)	or After collision with barrier $v_{\rm Q} = \frac{3eu}{2} \leftarrow$	B1		
	Impulse - momentum overall for Q			
	$\rightarrow 2mu + 3mu + I = -4m \times \frac{u}{4}$	M1	All terms present	
	I = -6mu	A1 A1	All correct except for sign errors	
	so impulse of $6mu$ on the barrier \rightarrow	A1	Direction must be clear. Units not required.	
	Consider impact of Q with the barrier to give speed v_{Q} after impact			
	$\rightarrow \frac{3u}{2} \times 3m - 6mu = 3mv_Q$	M1	Attempt to use I - M	
		F1		
	so $v_{\rm Q} = -\frac{u}{2}$	F1		
	$e = \frac{u}{2} \div \frac{3u}{2} = \frac{1}{3}$	A1	cao	
				9

Q 2		Mark		Sub
(i)				
	$R = 80g\cos\theta$ or $784\cos\theta$	B1	Seen	
	$F_{\rm max} = \mu R$	M1		
	so $32g\cos\theta$ or $313.6\cos\theta$ N	A1		
				3
(ii)				
	Distance is $\frac{1.25}{\sin\theta}$	B1		
	WD is $F_{max}d$	M1		
	so $32g\cos\theta \times \frac{1.25}{\sin\theta}$	E1	Award for this or equivalent seen	
	$=\frac{392}{\tan\theta}$			
				3
(iii)				
	Δ GPE is mgh	M1	A (100 I	1
	so $80 \times 9.8 \times 1.25 = 980$ J	A1	Accept 100g J	2
(iv)				2
(1)	either			
	P = Fv	M1		
	so $(80g\sin 35 + 32g\cos 35) \times 1.5$	B1	Weight term	
		A1	All correct	
	= 1059.85 so 1060 W (3 s. f.) or	A1	cao	
	$P = \frac{WD}{\Delta t}$	M1		
	so $\frac{980 + \frac{392}{\tan 35}}{\sqrt{2}}$	B1	Numerator FT their GPE	
	so $\frac{1.25}{(1.25)}$ ÷ 1.5	B1	Denominator	
	$\left(\frac{1}{\sin 35}\right)^{-1.5}$			
	= 1059.85 so 1060 W (3 s. f.)	A1	cao	
()				4
(v)	either Using the W-E equation	M1	Attempt speed at ground or dist to reach required	
		1111	speed. Allow only init KE omitted	
	$(1)^2$ 392			
	$0.5 \times 80 \times v^2 - 0.5 \times 80 \times \left(\frac{1}{2}\right)^2 = 980 - \frac{392}{\tan 35}$	B1	KE terms. Allow sign errors. FT from (iv).	1
	(2) (41155	B1	Both WD against friction and GPE terms. Allow	1
			sign errors. FT from parts above.	
		A1	All correct	
	v = 3.2793 so yes	A1	CWO	
	or N2L down slope	M1	All forces present	
	a = 2.409973	A1		
	distance slid, using <i>uvast</i> is 1.815372	A1		1
	vertical distance is 1.815372× sin35	M1	valid comparison	1
	= 1.0412 < 1.25 so yes	A1	CWO	
	110112111 (1120 50)05			5

Q 3		Mark		Sub
(i)				
		M1	Correct method for \overline{y} or \overline{z}	
		B1 M1	Total mass correct	
	$\begin{pmatrix} 30 \end{pmatrix}$	IVI I	$15\cos\alpha$ or $15\sin\alpha$ attempted either part	
	$\overline{y}: 250 \times 4 + 125 \left(8 + \frac{30}{2} \cos \alpha\right) = 375 \overline{y}$	B1	$\left(8+\frac{30}{2}\cos\alpha\right)$	
		B1	250×4	
	$\overline{y} = \frac{28}{3} = 9\frac{1}{3}$	E1	Accept any form	
	\overline{z} : $(250 \times 0+) 125 \times \frac{30}{2} \sin \alpha = 375\overline{z}$	B1	LHS	
	$\overline{z} = 3$	E1		8
(ii)	Yes. Take moments about CD. c.w moment from weight; no a.c moment from	E1		
	table	E1	[Award E1 for $9\frac{1}{3} > 8$ seen or 'the line of action	
			5	
			of the weight is outside the base]	2
(iii)				2
	c.m. new part is at (0, 8 + 20, 15)	M1	Either y or z coordinate correct	
		M1	Attempt to 'add' to (i) or start again. Allow mass error.	
	$375 \times \frac{28}{3} + 125 \times 28 = 500 \overline{y}$ so $\overline{y} = 14$	E1		
	$375 \times 3 + 125 \times 15 = 500\overline{z}$ so $\overline{z} = 6$	E1		
				4
(iv)		DI		
	Diagram	B1 B1	Roughly correct diagram Angle identified (may be implied)	
	6			
	Angle is $\arctan \frac{6}{14}$	M1	Use of tan. Allow use of 14/6 or equivalent.	
	$= 23.1985$ so 23.2° (3 s. f.)	A1	cao	
		10		4
		18		

Q 4 (a)				sub
(i)	Let the \uparrow forces at P and Q be $R_{\rm P}$ and $R_{\rm Q}$ c.w. moments about P $2 \times 600 - 3R_{\rm Q} = 0$ so force of 400 N \uparrow at	M1 A1	Moments taken about a named point.	
	Q a.c. moments about Q or resolve $R_{\rm P} = 200$ so force of 200 N \uparrow at P	M1 A1		4
(ii)	$R_{\rm p} = 0$ c.w. moments about Q $2L - 1 \times 600 = 0$ so $L = 300$	B1 M1 A1	Clearly recognised or used. Moments attempted with all forces. Dep on $R_p = 0$ or R_p not evaluated.	3
(b) (i)	$\cos \alpha = {}^{15}\!\!/_{17}$ or $\sin \alpha = {}^{8}\!\!/_{17}$ or $\tan \alpha = {}^{8}\!\!/_{15}$ c.w moments about A $16 \times 340 \cos \alpha - 8R = 0$ so $R = 600$	B1 M1 A1 E1	Seen here or below or implied by use. Moments. All forces must be present and appropriate resolution attempted. Evidence of evaluation.	4
(ii)	Diagram (Solution below assumes all internal forces set as tensions)	B1 B1	Must have 600 (or <i>R</i>) and 340 N and reactions at A. All internal forces clearly marked as tension or thrust. Allow mixture. [Max of B1 if extra forces present]	
(iii)	B ↓ 340 cos α + T_{BC} cos α = 0 so T_{BC} = -340 (Thrust of) 340 N in BC C → T_{BC} sin α - T_{AC} sin α = 0 so T_{AC} = -340 (Thrust of) 340 N in AC	M1 A1 F1	Equilibrium at a pin-joint	2
	B ← $T_{AB} + T_{BC} \sin \alpha - 340 \sin \alpha = 0$ so $T_{AB} = 320$ (Tension of) 320 N in AB Tension/ Thrust all consistent with working	M1 A1 F1	Method for T_{AB} [Award a max of 4/6 if working inconsistent with diagram]	6

4762 Mechanics 2

Q 1		mark	comment	sub
(a) (i)	before u u	B1		1
	P Q			
	after			
	V <i>u</i> / ₃			
(ii)				
	$mu - kmu = mv + km\frac{u}{3}$	M1	PCLM applied	
	(Λk)	A1	Either side correct (or equiv)	
	$v = \left(1 - \frac{4k}{3}\right)u$	E1	Must at least show terms grouped	
(iii)				3
(,	Need v < 0	E1	Accept $\frac{4k}{3} > 1$ without reason	
	SO $k > \frac{3}{4}$	B1		
			[SC1: $v = 0$ used and inequality stated without reason]	2
(iv)				
	$\frac{\frac{u}{3}-v}{-u-u} = -\frac{1}{2}$	M1	Use of NEL	
		A1		
	So $v = -\frac{2u}{3}$	E1		
	$-\frac{2u}{3} = u\left(1 - \frac{4k}{3}\right)$	M1		
	so <i>k</i> = 1.25	A1	сао	5
(b) (i)	(1) (2)			
(i)	$9\binom{1}{-2} + 5\binom{3}{2} = 8\mathbf{V}$	M1	Use of PCLM	
		B1 M1	Use of mass 8 in coalescence Use of $I = Ft$	
	$\mathbf{V} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$	E1		
				4
(ii)	. 1			
	i cpt $3 \rightarrow -3 \times \frac{1}{2}$	M1	Allow wrong sign	

- 1	7	6	n
- 4	1	υ	~

PMT

j cpt unchanged B1 May be implied new velocity $\begin{pmatrix} -1.5\\ -1 \end{pmatrix}$ m s ⁻¹ A1 $\begin{pmatrix} 1\\ 0 \end{pmatrix}$]	as
(-1, 5)	
(0)	
	3
18	
Q 2 mark comment	cub
Q 2 mark comment (a)	sub
(i) (A) Yes. Only WD is against E1 Accept only WD is against gravit or no work done against friction.	ty
(B) Block has no displacement in E1	2
(ii)	
$0.5 \times 50 \times 1.5^2 = 20gx - 5gx$ M1 Use of WE with KE. Allow $m = 25$.	
B1 Use of 50	
M1 At least 1 GPE term A1 GPE terms correct signs	
x = 0.38265 so 0.383 m (3 s	
f.) A1 cao	
	5
(iii)	
$0.5 \times 50 \times U^2$ $0.5 \times 50 \times 1.5^2$ M1 WE equation with WD term. Allo	w
GPE terms missing	-
B1 Both KE terms. Accept use of 2 = $2 \times 20g - 2 \times 5g - 180$ B1 Either GPE term	5.
B1 180 with correct sign	
V = 2.6095 so 2.61 m s ⁻¹ A1 cao	
	5
(b)	
Force down the slope is	
$2000 + 450g \sin 20$ M1 Both terms. Allow mass not weight	
B1 Weight term correct	
Using $P = Fv$ M1 $P = (2000 + 450g \sin 20) \times 2.5$ F1 FT their weight term	
P = 8770 77 = so 8770 W (3 s	
$f_{.}$ f.) A1 cao	
	5
17	

PMT

Q 3		mark	comment	sub
(i)				
.,	c.w. moments about A	M1	Moments equation.	
	$5R_{\rm B} - 3 \times 85 = 0$ so $R_{\rm B} = 51$ giving	A1	Accept no direction given	
	51 N ↑		Accept no direction given	
	Either a.c. moments about B or	M1		
	resolve ↑			
	$R_{\rm A} = 34 \text{ so } 34 \text{ N} \uparrow$	F1	Accept no direction given	
()				4
(ii)			Moments with attempt to resolve	
	c.w. moments about A	M1	at least	
			one force. Allow $s \leftrightarrow c$.	
	$85 \times 3\cos \alpha - 27.2 \times 5\sin \alpha = 0$	B1	Weight term	
		B1	horiz force term	
	SO $\tan \alpha = \frac{3 \times 85}{27.2 \times 5} = \frac{15}{8}$	E1	Must see some arrangement of	
	27.2×5 8		terms	
			or equiv	4
(iii)				4
(111)				
	$A \mapsto S$			
	34 N			
	K	B1	All forces present and labelled	
			•	
	$F \alpha$			
	85 NV B			
	a.c. moments about B	M1	Moments with attempt to resolve	
		1011	forces	
	95 · 2 · · · · · · · · · · · · · · · · ·	D4	and all relevant forces present	
	$85 \times 2 \times \cos \alpha + 34 \times 2.5 - 5S \times \sin \alpha = 0$	B1	34×2.5 All other terms correct. Allow sign	
		A1	errors.	
	S = 37.4	A1	All correct	
	Resolving horizontally and	M1	Either attempted	
	vertically			
	\rightarrow S-F-34sin α = 0 so F = 7.4	E1	R = 101 need not be evaluated	
	$\uparrow R-85-34\cos\alpha=0$	A1	here	
			[Allow A1 for the two expressions	
			if	
			correct other than $s \leftrightarrow c$]	
	Using $F = \mu R$	M1		
	$\mu = \frac{7.4}{101} = 0.07326$ so 0.0733			
	101	A1	cao	
	(3 s. f.)			10
		18		10

58

Q 4		mark	comment	sub
(i)	Taking a <i>y</i> -axis vert downwards from O		Allow areas used as masses	
	$2\pi\sigma \times 8^2 \times 4 + 2\pi\sigma \times 8 \times k \times \frac{k}{2}$	M1	Method for c.m.	
	2	B1 B1 B1	'4' used 16πk k/2 used	
	$= \left(2\pi\sigma \times 8^2 + 2\pi\sigma \times 8k\right)\overline{y}$	B1	Masses correct	
	$\mathbf{SO} \ \overline{y} = \frac{64 + k^2}{16 + 2k}$	E1	Must see some evidence of simplification Need no reference to axis of symmetry	6
(;;)				
(ii)	k = 12 gives OG as 5.2 and mass as $320\pi\sigma$	B1	Allow for either. Allow $\sigma = 1$	
	$320\pi\sigma \times 5.2 + \pi\sigma \times 8^2 \times 12$	M1	Method for c.m. combining with (i) or starting again	
	(220 (1))=	B1 B1	One term correct Second term correct	
	$= (320\pi\sigma + 64\pi\sigma)\overline{y}$			
	$\overline{y} = 6\frac{1}{3}$	E1	Some simplification shown	5
(iii)				
	$\begin{array}{c} 0 \\ 12 \\ 12 \\ \theta \end{array}$	B1 B1 B1	G above edge of base $12-6\frac{1}{3}=5\frac{2}{3}$ seen here or below 8 seen here or below	
	$\tan \theta = \frac{8}{5\frac{2}{3}}$	M1	Accept $\frac{5\frac{2}{3}}{8}$ or attempts based on $6\frac{1}{3}$ and 8.	
	θ = 54.6887 so 54.7° (3 s. f.)	A1	cao	5
(iv)	Sline when we set			
	Slips when $\mu = \tan \theta$	M1	Or	
	$\frac{8}{5\frac{2}{3}} = 1.4117$	B1		
	< 1.5 so does not slip	A1	There must be a reason	3
		19		0

4762 Mechanics 2

4762

1 (a)				
(i)	Let vel of Q be $v \rightarrow 6 \times 1 = 4v + 2 \times 4$ $v = -0.5 \text{ so } 0.5 \text{ m s}^{-1}$ in opposite direction to R	M1 A1 A1 A1	Use of PCLM Any form Direction must be made clear. Accept – 0.5 only if + ve direction clearly shown	4
(ii)	Let velocities after be R: $v_R \rightarrow$; S: $v_S \rightarrow$ PCLM +ve $\rightarrow 4 \times 2 - 1 \times 3 = 2v_R + 3v_S$ $2v_R + 3v_S = 5$ NEL +ve \rightarrow $\frac{v_S - v_R}{-1 - 4} = -0.1$ so $v_S - v_R = 0.5$ Solving gives $v_R = 0.7 \rightarrow$ $v_S = 1.2 \rightarrow$	M1 A1 M1 A1 A1 A1	PCLM Any form NEL Any form Direction not required Direction not required Award cao for 1 vel and FT second	6
(iii)	R and S separate at 0.5 m s ⁻¹ Time to drop <i>T</i> given by $0.5 \times 9.8T^2 = 0.4$ so $T = \frac{2}{7}$ (0.28571) so distance is $\frac{2}{7} \times 0.5 = \frac{1}{7}$ m (0.142857m)	M1 B1 A1	FT their result above. Either from NEL or from difference in final velocities cao	3
(b)	before after $v \rightarrow u$ $u \rightarrow u$ $v \rightarrow (-)ev$ KE loss is $\frac{1}{2}m(u^2 + v^2) - \frac{1}{2}m(u^2 + e^2v^2)$ $= \frac{1}{2}mu^2 + \frac{1}{2}mv^2 - \frac{1}{2}mu^2 - \frac{1}{2}me^2v^2$ $= \frac{1}{2}mv^2(1-e^2)$	B1 B1 M1 E1	Accept $v \rightarrow ev$ Attempt at difference of KEs Clear expansion and simplification of correct expression	
				4
				17

2(i)	GPE is 1200 × 9.8 × 60 = 705 600 Power is (705 600 + 1 800 000) ÷ 120 = 20 880 W = 20 900 W (3 s. f.)	B1 M1 B1 A1	Need not be evaluated power is WD ÷ time 120 s cao	4
(ii)	Using $P = Fv$. Let resistance be R N 13500 = 18 F so $F = 750$ As v const, $a = 0$ so $F - R = 0$	M1 A1	Use of $P = Fv$.	
	Hence resistance is 750 N	E1	Needs some justification	
	We require $750 \times 200 = 150\ 000\ J$	M1	Use of $WD = Fd$ or Pt	
	(= 150 kJ)	F1	FT their F	5
(iii)	$\frac{1}{2} \times 1200 \times (9^2 - 18^2)$ = 1200 \times 9.8 \times x \sin 5 - 1500 x	M1 B1 M1 A1 A1	Use of W-E equation with 'x' 2 KE terms present GPE term with resolution GPE term correct All correct	
	Hence $145800 = 475.04846x$ so $x = 306.91$ so $307 \text{ m} (3 \text{ s, f,})$	A1	cao	6
(iv)	P = Fv and N2L gives $F - R = 1200a$ Substituting gives P = (R + 1200a)v If $a \neq 0$, v is not constant. But P and R are constant so a cannot be constant.	B1 B1 E1 E1	Shown	
				4
3 (i) (A)	Let force be P a.c. moments about C $P \times 0.125 - 340 \times 0.5 = 0$ P = 1360 so 1360 N	M1 A1 A1	Moments about C. All forces present. No extra forces. Distances correct cao	<u>19</u> 3
(i) (<i>B</i>)	Let force be P c.w. moments about E $P \times 2.125 - 340 \times (2 - 0.5) = 0$ P = 240 so 240 N	M1 A1 A1	Moments about E. All forces present. No extra forces. Distances correct cao	3

(ii)	$Q \sin \theta \times 2.125 + Q \cos \theta \times 0.9$ $= \frac{25.5Q}{13} + \frac{4.5Q}{13}$ $= \frac{30Q}{13} \text{ so } \frac{30Q}{13} \text{ N m}$	M1 B1 E1	Moments expression. Accept $s \leftrightarrow c$. Correct trig ratios or lengths Shown	
(iii)	We need $\frac{30Q}{13} = 340 \times 1.5$ so $Q = 221$ Let friction be <i>F</i> and normal reaction <i>R</i> Resolve \rightarrow $221\cos\theta - F = 0$ so $F = 85$ Resolve \uparrow	M1 E1 M1 A1	Moments equn with all relevant forces Shown	3
	221 sin θ + R = 340 so R = 136 F < μ R as not on point of sliding so 85 < 136 μ	M1 A1 M1 A1	Accept \leq or = Accept \leq . FT their <i>F</i> and <i>R</i>	
	SO $\mu > \frac{5}{8}$	E1		9
				9 18
4 (i)	$4000\left(\frac{\overline{x}}{\overline{y}}\right) = 4800\left(\frac{30}{40}\right) - 800\left(\frac{50}{20}\right)$ so $\overline{x} = 26$ $\overline{y} = 44$	M1 A1 E1 A1	Any complete method for c.m. Either one RHS term correct or one component of both RHS terms correct [SC 2 for correct \overline{y} seen if M 0]	
(ii)	$250\left(\frac{\overline{x}}{\overline{y}}\right)$ $= 110\left(\begin{array}{c}0\\55\end{array}\right) + 40\left(\begin{array}{c}20\\0\end{array}\right) + 40\left(\begin{array}{c}40\\20\end{array}\right) + 20\left(\begin{array}{c}50\\40\end{array}\right) + 40\left(\begin{array}{c}60\\60\end{array}\right)$ $\overline{x} = 23.2$ $\overline{y} = 40.2$	M1 B1 B1 E1 A1	Any complete method for c.m. Any 2 edges correct mass and c.m. or any 4 edges correct with mass and <i>x</i> or <i>y</i> c.m. coordinate correct. At most one consistent error	.4

(iii)	Qį			
	110 - 40.2 40.2 0 6 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	B1	Indicating c.m. vertically below Q	
	Angle is $\arctan\left(\frac{23.2}{110-40.2}\right)$	B1 M1	Clearly identifying correct angle (may be implied) and lengths Award for $\arctan\left(\frac{b}{a}\right)$ where $b = 23.2$ and $a = 69.8$ or 40.2 or where $b = 69.8$ or 40.2 and $a = 23.2$. Allow use of their value for <i>y</i> only.	
	= 18.3856 so 18.4° (3 s. f.)	A1	cao	4
(iv)	$10\left(\frac{\overline{x}}{\overline{y}}\right) = 2 \times 1.5 \times \begin{pmatrix} 26\\44 \end{pmatrix} + 7 \begin{pmatrix} 23.2\\40.2 \end{pmatrix}$	M1	Combining the parts using masses	
	$\overline{x} = 24.04$ so 24.0 (3 s.f.) $\overline{y} = 41.34$ so 41.3 (3 s.f.)	B1 A1 A1 F1	Using both ends All correct cao FT their <i>y</i> values only.	5
				18

Mathematics (MEI)

Advanced GCE 4762

Mechanics 2

Mark Scheme for June 2010

Q 1		mark		sub
(i)	For P $200 \times 5 + 250 = 200v_{p}$ $v_{p} = 6.25 \text{ so } 6.25i \text{ m s}^{-1}$ For Q $250 \times 5 - 250 = 250v_{Q}$ $v_{Q} = 4 \text{ so } 4i \text{ m s}^{-1}$	M1 E1 M1 A1	Award for I-M Accept no i and no units Must have impulse in opposite sense Must indicate direction. Accept no units.	4
(ii)	i direction positive PCLM: $2250 = 200 \times 4.5 + 250w_Q$ $w_Q = 5.4$ so 5.4 i m s ⁻¹ NEL: $\frac{w_Q - 4.5}{4 - 6.25} = -e$ e = 0.4	M1 F1 E1 M1 A1 A1	PCLM used. Allow error in LHS FT from (i) Any form. FT only from (i) NEL . Allow sign errors Signs correct. FT only from (i) cao	6
(iii)	i direction positive Suppose absolute vel of object is $-V$ i $200 \times 4.5 = -20V + 180 \times 5.5$ V = 4.5 speed of separation is $5.5 + 4.5 = 10$ m s ⁻¹	M1 B1 A1 A1 F1	Applying PCLM. All terms present. Allow sign errors. Correct masses All correct (including signs) FT their V.	5
(iv)	$180 \times 5.5 + 250 \times 5.4 = 430W$ W = 5.4418 so 5.44 i m s ⁻¹ (3 s. f.)	M1 A1	Using correct masses and velocities cao	2
				17

Q 2		mark		sub
(i)	$20\left(\frac{\overline{x}}{\overline{y}}\right) = 15\left(\frac{20}{0}\right) + 3\left(\frac{0}{100}\right) + 2\left(\frac{25}{200}\right)$ $\overline{x} = 17.5$ $\overline{y} = 35$	M1 B1 A1 A1 A1	Method to obtain at least 1 coordinate '100' or '25' correct Either one RHS term correct or one component of two RHS terms correct	
	y – 55	AI		5
(ii)	$25\left(\frac{\overline{x}}{\overline{y}}\right) = \begin{pmatrix} 350\\700 \end{pmatrix} + 5\begin{pmatrix} 40\\200 \end{pmatrix}$ so $\overline{x} = 22$, $\overline{y} = 68$	M1 E1	Using (i) or starting again Clearly shown.	2
(iii)	We need the edge that the \overline{x} position is nearest $\overline{x} = 22$; distances are 22 to PQ, 18 to SR 15 to QR so edge QR	M1 B1 B1 A1	This may be implied One distance correct All distances correct	4
(iv)	Moments about RS In sense xOy $T \sin 50 \times 200 - T \cos 50 \times 40$ $-20g \times (40 - 17.5) = 0$ T = 34.5889 so 34.6 N (3 s. f.)	M1 B1 M1 A1 B1 A1 A1	Moments about RS attempted Use of weight not mass below. FT mass from here Attempt to find moment of <i>T</i> about RS, including attempt at resolution. May try to find perp dist from G to line of action of the force. 40 - 17.5 All correct allowing sign errors cao (except for use of mass)	7
				18

Q 3		mark		sub
(i)	a.c. moments about A $1 \times T - 2 \times 300 = 0$ so $T = 600$ Resolving $\rightarrow X = 0$ $\uparrow T - Y = 300$ so $Y = 300$	E1 B1 M1 A1	Justified	4
(ii)	Diagram The working below sets all internal forces as tensions; candidates need not do this.	B1 B1	All external forces marked consistent with (i) All internal forces with arrows and labels	2
(iii)	Let angle DAB be θ . $\cos \theta = \frac{1}{2}$, $\sin \theta = \frac{\sqrt{3}}{2}$ A $\uparrow -300 - T_{AB} \sin \theta = 0$ so $T_{AB} = -200\sqrt{3}$ so force is $200\sqrt{3}$ (C) A $\rightarrow T_{AD} + T_{AB} \cos \theta = 0$ so $T_{AD} = 100\sqrt{3}$ so force is $100\sqrt{3}$ (T) C $\uparrow T_{CD} \sin \theta - 300 = 0$ so $T_{CD} = 200\sqrt{3}$ so force is $200\sqrt{3}$ (T) C $\leftarrow T_{BC} + T_{CD} \cos \theta = 0$ so $T_{BC} = -100\sqrt{3}$ so force is $100\sqrt{3}$ (C) B $\uparrow T_{AB} \sin \theta + T_{BD} = 0$ so $T_{BD} = 300$ so force is 300 (T)	B1 M1 M1 A1 F1 F1 F1 F1 F1 F1	Or equivalent seen Attempt at equilibrium at pin-joints 1 equilib correct, allowing sign errors All T/C consistent with their calculations and diagrams	9
(iv)	AD, AB, BC, CD 300 N, X and Y not changed. Equilibrium equations at A and C are not altered B $\uparrow T_{AB} \sin \theta + T'_{BD} + 600 = 0$ so $T'_{BD} = -300$ so force is 300 (C)	B1 E1 M1 A1	C not needed. [If 300 N (C) given WWW, award SC1 (NB it must be made clear that this is a compression)]	4

Q 4		mark		sub
(i)	Let friction be F N and normal reaction R N $F_{\text{max}} = 58\cos 35$ $R = 16g + 58\sin 35$ $F_{\text{max}} = \mu R$ so $\mu = 0.249968$ about 0.25	B1 M1 A1 M1 E1	Need not be explicit Both terms required.	5
(ii)	WD is 70cos35×3 = 210cos35 so 172.0219 = 172 J (3 s. f.) Average power is WD/time	M1 A1 M1	Use of WD = Fd . Accept cos 35 omitted.	
	so 34.4043 = 34.4 W (3 s. f.)	A1	cao	4
(iii)	Using the constant acceleration result $s = \frac{1}{2}(u+v)t$ with $s = 3$, $u = 0$, $v = 1.5$ and $t = 5$ we see that $3 \neq \frac{1}{2}(0+1.5) \times 5 = 3.75$	M1 E1	Attempt to substitute in <i>suvat</i> (sequence) Conclusion clear	2
(iv)	172.0219 = $\frac{1}{2} \times 16 \times 1.5^2$ +0.25×(16g + 70 sin 35)×3 + WD so WD by S is 6.30916 so 6.31 J (3 s. f.)	M1 M1 A1 M1 A1 A1 A1	Using W-E equn, allow 1 missing term KE term attempted correct Attempt at using new F in $F_{max} = \mu R$ All correct cao	7
				18

Mathematics (MEI)

Advanced GCE Unit **4762:** Mechanics 2

Mark Scheme for January 2011

January 2011

Q 1		mark	notes
(i)	Let normal reaction be R $\sin \alpha = \sqrt{1 - 0.8^2} = 0.6$ $R = 2.5 \times 9.8 \times 0.8$ $F_{\text{max}} = 0.85 \times R = 16.66$ Wt cpt down slope is $2.5 \times 9.8 \times 0.6 = 14.7$ 16.66 > 14.7 so at rest	B1 M1 B1 F1 B1 E1	Accept any form and implied Use of $F_{max} = \mu R$ Expression for <i>R</i> ; may be implied FT their <i>R</i> FT if their <i>F</i> and weight component show given result If <i>g</i> omitted, allow B1M1B0F1B0E1, so 4/6 [Award as follows for use of $\tan \alpha < \mu$: B1 $\tan \alpha = \frac{3}{4}$ E1 $\tan \alpha < \mu$ shown]
(ii)	Let the speeds down the plane be v_A and v_B . PCLM down the plane $1.5 \times 16 = 2.5v_A + 1.5v_B$ so $5v_A + 3v_B = 48$ NEL +ve down the plane $\frac{v_A - v_B}{0 - 16} = -0.4$ $v_A - v_B = 6.4$ $v_A = 8.4$ so 8.4 m s ⁻¹ down plane $v_B = 2$ so 2 m s ⁻¹ down plane	M1 A1 M1 A1 E1 F1 6	PCLM Any form NEL. Allow sign errors Any form Condone direction not clear if +8.4 seen Condone direction not clear if +2 seen. SC1 if 2 equations obtained and 8.4 substituted into one to obtain answer 2 (instead of E1F1)
(iii)	$1.5 \times (2 - 16)$ down plane = -21 N s down the plane so 21 Ns up the plane	M1 A1 A1 3	Use of $m(\mathbf{v} - \mathbf{u})$ If impulse on <i>A</i> found, treat as MR unless final answer relates this to impulse on <i>B</i> $\pm 21 \text{ N s}$ Direction explicitly commented on

4	762
---	-----

Mark Scheme

Q 1		mark	notes
(iv)	either		
``	$(2.5 \times 9.8 \times 0.6 - F_{\text{max}}) \times t = 2.5(0 - 8.4)$	M 1	Using Impulse-momentum (must use 8.4). sufficient to consider one term on LHS
		B1	Either side correct
		A1	Allow only sign errors
	so <i>t</i> = 10.7142 10.7 s (3 s. f.)	A1	cao
	or		
	Using N2L down the plane	M1	Using N2L ; sufficient to consider one force term
	a = -0.784	A1	Allow sign errors
		M1	Using appropriate suvat must use a or-a found by use of N2L and $u = 8.4$
	using $v = u + at$, $t = 10.7142$ 10.7 s (3 s. f.)	A1	cao
	or		
	$0.5 \times 2.5 \times 8.4^2 + (14.7 - 16.66)x = 0$	M1	Use energy with 8.4, sufficient to consider one non-KE term
	x = 45	A1	
		M1	Using appropriate suvat
	T = 10.7142 10.7 (3 s. f.)	A1	cao
		4	
		19	

Q 2		mark	notes
(a)			
	$v \mathrm{m s}^{-1}$ $V \mathrm{m s}^{-1}$ \mathbf{i}		
	$ \qquad \stackrel{\scriptstyle \scriptstyle \leftarrow}{\longleftarrow} \qquad \stackrel{\scriptstyle \scriptstyle \leftarrow}{\longrightarrow} \qquad \stackrel{\scriptstyle \scriptstyle \scriptstyle \scriptstyle \leftarrow}{\longrightarrow} \qquad \stackrel{\scriptstyle \scriptstyle \scriptstyle \scriptstyle \leftarrow}{\longrightarrow} \qquad \stackrel\scriptstyle \scriptstyle \scriptstyle \scriptstyle \scriptstyle \scriptstyle \rightarrow \qquad \stackrel\scriptstyle \scriptstyle $		
	C 0.004 kg B 0.060 kg		
	Energy: $\frac{1}{2} \times 0.004 \times v^2 + \frac{1}{2} \times 0.060 \times V^2 = 0.8$	M1	Use of KE in two terms in an equation.
	$v^2 + 15V^2 = 400$	A1	Any form
	PCLM in i direction: $0.06V - 0.004v = 0$	M1	PCLM. Accept sign errors.
	v = 15V	A1	Any form
	Solving	M1	Valid method for elimination of v or V from a linear and a quadratic
	$(15V)^2 + 15V^2 = 400$		
	so $V^2 = \frac{400}{240} = \frac{5}{3}$ and $\mathbf{V} = \sqrt{\frac{5}{3}}\mathbf{i}$	A1	Accept 1.29099i Accept no direction
	$\mathbf{v} = -15\sqrt{\frac{5}{3}}\mathbf{i} \ (= -\sqrt{375}\mathbf{i})$	F1	Accept – 19.3649i Accept no direction
		A1	Second answer follows from first
		AI 8	(Relative) directions indicated - accept diagram. Both speeds correct.
(b)			
(i)	W is work done by resistances on car		
	$\frac{1}{2} \times 800 \times (12^2 - 30^2) = -800 \times 9.8 \times 20 + W$	M1	Use of WE. Must have KE, W and GPE. Allow -W
		B1	Both KE terms. Accept sign error
		A1	All correct with $W \text{ or } -W$
	$W = -145\ 600$		
	so 145 600 J done by car against resistances	A1	cao
		1	
		4	
		B1 A1 A1 4	Both KE terms. Accept sign error All correct with W or $-W$

Q 2		mark	notes
(ii)	either The slope is $18 \times 25 = 450$ m long	B1	
	$\frac{800 \times 9.8 \times 20 + 750 \times 450}{25}$	M1	Use of $P = (Work done) / (elapsed time)$ used for at least one work done term
		M1	WD is force \times distance used for at least one force
		A1	Allow only sign errors both terms
	= 19 772 W	A1	cao.
	or		
	The angle of the slope is $\arcsin(1/22.5)$	B1	
	$\left(800\times9.8\times\frac{1}{22.5}+750\right)\times18$	M1	Use of $P = Fv$ used for at least one term
		M1	Attempt at weight component
		A1	Allow only sign errors both terms
	= 19 772 W	A1 5	cao.
		17	

Q 3		mark	notes
(i)	Horizontal $X - 50 = 0$ Vertical: $R - Y - 45 = 0$	B1 B1 2	Any form Any form
(ii)	a. c. moments about A $1 \times R = 3 \times 45$ so $R = 135$ so $135 - Y - 45 = 0$ and $Y = 90$	M1 E1 E1 3	Clearly shown Shown
(iii)	In analysis below all internal forces are taken as tensions	B1 B1 2	Correct arrow pairs for all internal forces Correct labels

Mark Scheme

Q 3		mark	notes
(iv)		M1 M1 M1	Equilibrium attempted at a pin-joint Equilibrium attempted at a 2 nd pin-joint Either Equilibrium equation for 2 nd direction at a pin-joint or 3 rd pin-joint considered
	At C	B1	At least 3 equations of resolution correct or follow through
	$\uparrow T_{\rm CD} \cos 30 - 45 = 0$ so $T_{\rm CD} = 30\sqrt{3}$		
	and force in CD is $30\sqrt{3}$ N (T)	A1	
	$\leftarrow T_{\rm BC} + T_{\rm CD} \cos 60 = 0 \text{ so } T_{\rm BC} = -15\sqrt{3}$		
	and force in BC is $15\sqrt{3}$ N (C)	F1	
	At D		
	$\downarrow T_{\rm BD}\cos 30 + T_{\rm CD}\cos 30 = 0$		
	so $T_{\rm BD} = -30\sqrt{3}$		
	and force in BD is $30\sqrt{3}$ N (C)	F1	
	$\leftarrow T_{\rm AD} + T_{\rm BD} \cos 60 - T_{\rm CD} \cos 60 - 50 = 0$		
	so $T_{\rm AD} = 50 + 30\sqrt{3}$		
	and the force in AD is $50+30\sqrt{3}$ N (T)	F1	
	At A		
	$\downarrow T_{AB} \cos 30 + 90 = 0$ so $T_{AB} = -60\sqrt{3}$		
	and the force in AB is $60\sqrt{3}$ N (C)	F1	
		B1	At least 4 T/C correct
		10	
(v)	The equilibria at C depend only on the		Resolve in two directions at C and obtain same results as in (iv) M1A1
. /	framework geometry and the 45 N.	E1	
	These are not changed so forces in CB and CD are not changed	E1	
		2	
		19	

Q 4		mark	notes
(i)	(2, 2.5)	B1 1	Condone writing as a vector
(ii)	By symmetry, $\overline{y} = 2.5$ For \overline{x} : $\left(5h + \frac{1}{2} \times 5 \times 6\right)\overline{x} = 5h \times \left(-\frac{h}{2}\right) + \frac{1}{2} \times 5 \times 6 \times 2$ so $(5h + 15)\overline{x} = -2.5h^2 + 30$ so $5(h+3)\overline{x} = 2.5(12 - h^2)$	B1 M1 A1 A1 A1	Some justification needed These next 4 marks may be obtained from correct FT of their "2" from (i) 1 st term RHS correct (allow sign error) Either other term correct All correct
	and $\overline{x} = \frac{12 - h^2}{2(h+3)}$	E1 6	Clearly shown, including signs.
(iii)	Need $\overline{x} > 0$ So $\frac{12 - h^2}{2(h+3)} > 0$ Hence $12 - h^2 > 0$	M1	Allow $\overline{x} \ge 0$ or $= 0$
	Since $h > 0, \ 0 < h < 2\sqrt{3}$	B1 A1 3	$2\sqrt{3}$ or $-2\sqrt{3}$ oe seen Accept only +ve root mentioned. WWW for signs Accept $h < 2\sqrt{3}$ as answer strict inequality for final A mark

4762

Q 4		mark	notes
Q4 (iv)	continued		
	When $h = 3$, $\overline{x} = 0.25$ Let mag of vert force be <i>T</i> N a.c moments about axis thro' O	B1	Could be scored in (v)
	$T \times 6 - 15 \times 0.25 = 0$	M1	If moments about another point need all relevant forces. Allow sign errors. Condone use of $15g$
	so $T = 0.625$ so 0.625 N	A1 3	cao
(v)	Let magnitude of force be U N a.c. moments about axis thro' D		
	$U\cos 30 \times 5 - 15 \times (3 + 0.25) = 0$	M1 B1	Each term must be a moment. If moments about another point need all relevant forces. Condone use of $15g$. moment of U (5 U cos30 or) oe
		A1	(3+0.25) oe
	<i>U</i> = 11.25833 so 11.3 N (3 s. f.)	A1 4	cao
		17	

Mathematics (MEI)

Advanced GCE Unit **4762:** Mechanics 2

Mark Scheme for June 2011

0.1			
Q1		mark	notes
(a) (i)	13T = 10(4.75 - (-1.75)) so T = 5. So 5 s. OR: 13 = 10a $T = \frac{4.75 - (-1.75)}{1.3} = 5$	M1 A1 A1 B1 M1 A1 3	Use of <i>I</i> = <i>Ft</i> . Allow sign errors Signs correct on RHS cao N2L Use of <i>suvat</i> cao
(ii)	PCLM: $10 \times 4.75 - 15 \times 0.5 = 25v_{P+Q}$ $v_{P+Q} = 1.6$ so 1.6 m s ⁻¹ in +ve direction	M1 A1 2	PCLM with combined mass. Allow sign errors No need for reference to direction
(iii)	PCLM: $10 \times 4.75 - 15 \times 0.5 = 10 \times 1 + 15v_Q$ Hence $v_Q = 2$ and Q has velocity 2 m s ⁻¹ NEL: $\frac{v_Q - 1}{-0.5 - 4.75} = -e$ so $e = 0.19047$ so 0.190 (3 s. f.)	M1 A1 A1 M1 A1 A1 A1 6	PCLM with all correct terms. Allow sign errorsAny formAccept no direct reference to directionNEL. Accept their v_q and any sign errors. Fraction must be correct way upAny form. FT their v_q .cao accept 0.19 , 4/21 accept 0.2 only if 0.19 seen earlier

(b)	Initial vert cpt is 14sin30 = 7	B1	
(-)	1^{st} hits ground at v given by		
	$v^2 = 7^2 + 2 \times 9.8 \times 3.125$	M1	Appropriate <i>suvat</i> . Allow ± 9.8 etc Condone $u = 14$
	<i>v</i> = 10.5	A1	
	Vert cpt after 2 nd bounce		
	$10.5 imes 0.6^2$	M1	their 10.5×0.6^n for $n = 1, 2$ or 3 Condone use of their initial vertical component. Do not award if horiz component is also multiplied by 0.6
		B1	use of $\times 0.6^2$ or attempt at two bounces with 0.6 used each time
	Horiz cpt is unchanged throughout (14 cos 30)	B1	Award even if value wrong or not given
	Angle is $\arctan\left(\frac{10.5 \times 0.6^2}{14\cos 30}\right) = 17.31586$	M1	FT their horiz and vert components. oe. Fraction must be for correct angle.
	so 17.3° (3 s. f.)	A1 8	cao SC answer of 11.7 will usually earn 5/8
		19	

|--|

Q 2		mark	notes	
~-		2110111	Penalise answers to fewer than 4sf only once	
(i)	cw moments about A Let force be S $600 \times 0.8 - S \times 2 = 0$ S = 240 so 240 N vertically upwards	M1 A1 A1	Moments. All forces. No extras Need statement of direction or diagram	
	v 1	3		
(ii)	cw moments about A Let tension be T $600 \times 0.8 - T \sin 50 \times 0.3 = 0$	M1	Moments. All forces. No extras. Attempt at moment of T (need not be resolved) Note that mmts about B needs forces at hinge.	
		M1 A1 A1	Correct method for moment of <i>T</i> . Allow length errors and $s \leftrightarrow c$ Moment of <i>T</i> correct (allow sign error) All correct	
	$T = 2088.65 (\frac{1600}{\sin 50})$ so 2089 N (4 s. f.)	A1	cao	
		5		
(iii)	Resolve $\rightarrow X - T\cos 50 = 0$ so $X = 1342.55$	M1	Resolving horiz. Allow sign error. T must be resolved, allow $s \leftrightarrow c$	
	= 1343 (4 s. f.)	F1	FT their T only. Allow 1600cot50	
	Resolve $\downarrow Y - T\sin 50 + 600 = 0$	M1	NB other methods possible	
	so $Y = 1000$	F1	FT their <i>T</i> only	
	Method for either <i>R</i> or α	M1	M dependent on attempts at X and Y using moments/resolution	
	$R = \sqrt{1600^2 \cot^2 50 + 1000^2} = 1674.05$	E 1		
	so 1674 (4 s. f.) 1000	F1	FT their <i>X</i> and <i>Y</i> Numerical value only	
	$\alpha = \arctan \frac{1000}{1600 \cot 50}$			
	$\alpha = 36.6804$ so 36.68° (4 s. f.)	F1 7	FT their <i>X</i> and <i>Y</i> Numerical value only Accept 36.67	
(iv)	Angle GAP is α above so 36.68° (4 s. f.) Weight, <i>T</i> and <i>R</i> are the only forces acting on the beam which is in equilibrium. Hence they are concurrent. Or geometrical calculation	B1 E1	Must be clear	
╞──┤		2		
		17		

Q 3		mark	notes
(i)	$10\left(\frac{\overline{x}}{\overline{y}}\right) = 4\left(\frac{-\frac{1}{2}}{2}\right) + 2\left(\frac{1}{2}\right) + \left(\frac{1\frac{1}{2}}{3\frac{1}{2}}\right) + 3\left(\frac{2\frac{1}{2}}{2\frac{1}{2}}\right)$ $= \left(\frac{-2+1+1\frac{1}{2}+7\frac{1}{2}}{8+6+3\frac{1}{2}+7\frac{1}{2}}\right) = \left(\frac{8}{25}\right)$ so $\left(\frac{\overline{x}}{\overline{y}}\right) = \left(\frac{0.8}{2.5}\right)$ and c.m. is (0.8, 2.5)	M1 B1 E1 E1 4	Correct method clearly indicated for <i>x</i> or <i>y</i> component. If 2D method, at least 1 mass + cm correct for a region. If separate cpts, at least 2 mass + cm correct for one of the cpts Working shown. Either expression shown oe Both
(ii)	c.w. moments about J $3.2 \times 1.8 - T_H \times 4 = 0$ so $T_H = 1.44$ and the force at H is 1.44 N Resolving \uparrow force at J is $3.2 - 1.44 = 1.76$ N	B1 M1 A1 M1 F1 5	Use of 1.8 oe A moments equation with all relevant forces. Allow use of 10 instead of 3.2 Or moments again Only FT if positive final answer
(iii)	below		

(iii)	$10\left(\frac{\overline{x}}{\overline{y}}\right) = 4\left(\begin{array}{c}0\\2\\\frac{1}{2}\end{array}\right) + 2\left(\begin{array}{c}\frac{1}{2}\\3\\0\end{array}\right) + 2\left(\begin{array}{c}2\\3\frac{1}{2}\\0\end{array}\right) + 2\left(\begin{array}{c}2\\3\frac{1}{2}\\-1\end{array}\right)$	M1	Dealing with 3D	
		B1 B1	Dealing correctly with one folded part Dealing with the other folded part	
	$= \begin{pmatrix} 0+1+4+5\\ 8+6+7+6\\ 2+0+0-2 \end{pmatrix} = \begin{pmatrix} 10\\ 27\\ 0 \end{pmatrix}$	E1	Working shown. Either expression shown oe	
	so $\left(\frac{\overline{x}}{\overline{y}}\right) = \begin{pmatrix} 1\\ 2.7\\ 0 \end{pmatrix}$ and c.m. is (1, 2.7, 0)	E1 5	All three components	
(iv)	/	B1	Recognising that cm is vertically below O (may be implied)	
	Let angle IOG be θ	B1	Correctly identifying the angle	
	$\tan\theta = \frac{1}{2.7}$	M1	Accept $\tan \theta = \frac{2.7}{1}$ oe	
	so angle is 20.323 so 20.3° (3 s. f.)	A1	Do NOT isw	
		4		
		1 1 3		

June 2011

4762

Q 4		mark	notes
(a)	$\frac{1}{2} \times 80 \times (6^2 - V^2)$ = 80 × 9.8 × 1600 - 1300000	M1	WE equation. Allow GPE OR init KE term omitted or wrong. Allow sign errors. There must be 3 terms one of which is the WD term
	so $V = 34.29285$ so 34.3 m s^{-1} , (3 s. f.)	B1 B1 A1 A1 5	KE terms correct (accept $40 \times (V^2 - 6^2)$) GPE term. Allow sign error All terms present. Accept only sign errors, but not the 1300000 and 80x9.8x1600 terms with same sign Cao accept $14\sqrt{6}$
(b) (i)	N2L up the slope. Driving force is <i>S</i> N $S - 1150 - 800 \times 9.8 \times 0.1 = 800 \times 0.25$ S = 2134 Power is 2134×8 = 17072 so 17.1 kW (3 s. f.)	M1 B1 M1 A1 E1 M1 A1 7	N2L. Allow either resistance or weight cpt omitted. Allow weight not resolved and sign errors. RHS correct Attempt at weight cpt ($800g\sin\theta$ is sufficient) Allow missing g Weight cpt correct (numerical) May be implied Use of $P = Fv$
(ii)	Let resistance on sledge be F N N2L up slope for sledge $900 - F - 300 \times 9.8 \times 0.1 = 300 \times 0.25$ so $F = 531$ normal reaction is $300g\cos\theta$ Use $\cos\theta = \sqrt{0.99}$ or $\cos 5.7$ $\mu = \frac{531}{300 \times 9.8 \times \sqrt{0.99}}$ = 0.181522 so 0.182 (3 s. f.)	M1 A1 B1 B1 M1 A1 6	Need non-zero accn, correct mass and 900. Allow weight missing or unresolved and allow sign errors. Do not award if 2134 included In context Use of $F = \mu R$ for any <i>F</i> and <i>R</i> but not F=900 cao
		18	

C	luesti	on	Answer	Marks	Guidance
1	(a)	(i)	KE change: $\frac{1}{2} \times 0.6 \times (7.5^2 - 5.5^2)$ = 7.8 J GPE change: $0.6 \times 9.8 \times 1.5 = 8.82$ J	M1 A1 B1 [3]	Difference of two KE terms Allow –8.82J
1	(a)	(ii)	W is work done against resistance 7.8 = 8.82 - W so $W = 1.02 \text{ J}$	[3] M1 A1 [2]	W–E all terms. Allow sign errors FT (i) only. Also FT only if mod (their KE) < mod (their PE) -1.02 gets M1A0; 16.62 gets M1A0
1	(a)	(iii)	Average resistance is F so $F \times 1.5 = 1.02$ so $F = 0.68$ Power is 0.68×5.5 = 3.74 so 3.74 W	M1 A1 M1 A1 [4]	Use of WD = Fs OR find $a = 8.667$ and use F = $0.6g - 0.6 \times 8.667$ May be implied. FT (ii) Use of $P = Fv$ any calculated F cao
1	(b)	(i)	$R = mg\cos 40$ $F_{max} = mg\sin 40$ $F_{max} = \mu R$ so $\mu = \frac{mg\sin 40}{mg\cos 40} = \tan 40$	B1 B1 M1 E1 [4]	Seen or implied Seen or implied Use of $F = \mu R$: substitute <i>F</i> and <i>R</i> This is the minimum amount of working needed to earn the E1 Must see explicit evidence of method Note: <i>g</i> omitted, treat as MR
1	(b)	(ii)	EITHER $\tan 40 \times 0.8 \times 9.8 \times \cos 20$ $\times 3 (= 18.545)$ $(+)0.8 \times 9.8$ $\times 3 \sin 20 (= 8.044)$ = 26.5897 so 26.6 J (3 s.f.)	B1 M1 B1 M1 A1	Use of $F_{\text{max}} = \mu R$ with tan 40 and cos 20 Use of WD = Fs NOTE: This mark may be awarded here or for use in PE term Use of mgh Allow sin \leftrightarrow cos interchange Two relevant terms added Cao Allow 26.7 Allow 27 Omission of g can get B0M1B1M1A0

PMT

0	uestion	Answer	Marks	Guidance
9		OR	iniai K5	Guidance
		$\tan 40 \times 0.8 \times 9.8 \times \cos 20 \ (= 6.182)$	B1	Use of $F_{\text{max}} = \mu R$ with tan 40 and cos 20
		$(+) 0.8 \times 9.8 \times \sin 20 (= 2.68)$	B1	Allow $\sin \leftrightarrow \cos$ interchange
		(= 8.8632444)	M1	Two relevant forces added
			M1	
		WD is 3 × 8.8632444		Use of $WD = Fs$ (for at least one of forces)
		= 26.5897 so 26.6 J (3 s.f.)	A1	cao
			[5]	Omission of g can get B0B1M1M1A0
2	(i)	a.c. moments about B		
		$10T_{\rm C} - 15 \times 2 = 0$	M1	Moments with all forces present, no extra forces.
		so $T_{\rm C} = 3$. Tension at C is 3 N	A1	
		$\uparrow T_{\rm C} + T_{\rm B} - 15 = 0$	M1	May take moments again
		so $T_{\rm B} = 12$. Tension at B is 12 N	F1	
	('')		[4]	
2	(ii)	a.c. moments about A		
		$25T\sin 30 - 15 \times 17 = 0$	M1	Attempt at moments with resolution; allow $\cos \leftrightarrow \sin$ error. All forces present, no extra forces
		so $T = 20.4$	A1	cao
		At A Let force \uparrow be Y N		
		$\uparrow Y + T \sin 30 - 15 = 0$ so $Y = 4.8$	B1	FT (can take moments about C)
		$\rightarrow X = T \cos 30 = 17.6669 N$	B1	FT Need not be evaluated
		$\sqrt{4.8^2 + (T\cos 30)^2}$	M1	
		= 18.3073755 so 18.3 N (3 s.f.)	A1 [6]	cao
2	(iii)	Let force be <i>P</i> .	լսյ	
		a.c. moments about D.		
		$8 \times 15 - 12 \times P = 0$	M 1	Moments about D with all forces present, no extra forces
		so $P = 10$ on point of tipping	A1	cao
		Using $F_{\text{max}} = \mu R$ on point of slipping	M 1	
		with $R = 15$	B1	
		gives $F_{\text{max}} = 0.65 \times 15 = 9.75$	A1	cao
		so slips first	E1	cao and WWW
		50 511/5 1150	[6]	

C	Questi	on	Answer	Marks	Guidance
3	(a)	(i)	$300 \begin{pmatrix} \overline{x} \\ \overline{y} \end{pmatrix} = 72 \begin{pmatrix} -6 \\ 3 \end{pmatrix} + 192 \begin{pmatrix} 4 \\ -6 \end{pmatrix} + 36 \begin{pmatrix} 10 \\ -4 \end{pmatrix}$ $\begin{pmatrix} \overline{x} \\ \overline{y} \end{pmatrix} = \begin{pmatrix} 696 \\ -1080 \end{pmatrix}$ so $\overline{x} = 2.32$ $\overline{y} = -3.6$	B1 M1 B1 A1 A1 [5]	Correctly identifying the position of the c.m of triangle EFH (10, -4) A systematic method for at least 1 cpt <i>Either</i> all <i>x</i> or all <i>y</i> values correct <i>or</i> 2 vector terms correct <i>or</i> allow one common error in both components, e.g. one wrong mass, misunderstanding of c.m. of triangle
3	(a)	(ii)	B 12 C 2.32 α 0 G 3.6 G 3.6	M1* B1 M1dep* A1 [4]	Identifying correct angle. May be implied At least 1 relevant distance found. FT (i) Use of $\arctan \frac{9.6}{14.32}$ or $\arctan \frac{14.32}{9.6}$ o.e. cao or $180^{\circ} - 33.8^{\circ}$
3	(b)	(i)	Marking given tension and thrust Marking all other forces internal to rods acting on A, B and C (as T or C)	B1 B1 [2]	Each labelled with magnitude and correct direction Need ALL forces at <i>A</i> , <i>B</i> and <i>C</i> . Need pairs of arrows on <i>AB</i> , <i>AC</i> and <i>BC</i>

Q	Question		Answer	Marks	Guidance
3	(b)	(ii)	Equilibrium at A ↑		
			$T_{\rm AB}\cos 30 - 18 = 0$	M1	Equilibrium at one pin-joint
			$T_{\rm AB} = 12\sqrt{3}$. Force in AB: $12\sqrt{3}$ N (T)	A1	20.8 Sign consistent with tension on their diagram
			$A \leftarrow$		
			$T_{\rm AC} + T_{\rm AB} \cos 60 + 5 = 0$	M1	
			$T_{\rm AC} = -(5 + 6\sqrt{3})$.		-15.39
			Force in AC: $(5 + 6\sqrt{3}) N(C)$	F1	FT their T_{AB}
			At B in direction AB		
			$T_{\rm BR}\cos 60 - T_{\rm AB} = 0$		
			so $T_{BR} = 24\sqrt{3}$	M1	Allow FT Other methods are possible, but award this M1 only for a
			At B in direction BC		complete method that would lead to $T_{\rm BC}$
			$T_{\rm RC} - T_{\rm BR} \cos 30 = 0$		
			$T_{\rm BC} = 36$. Force in BC: 36 N (T)	F1	
			BC	A1	cao WWW T/C all correct
				[7]	
4	(i)		$26t = 3 \times 13$	M1	Use of $Ft = m(v - u)$ or N2L to find $a (= 26/3)$ and use $v = u + at$
			t = 1.5 so 1.5 s	A1 [2]	cao
4	(ii)		PCLM		
	~ /		$10 \times 0 + 3 \times 13 = 10v_{\rm Q} + 3v_{\rm P}$	M1	Use of PCLM
			$39 = 10v_{\rm Q} + 3v_{\rm P}$	A1	Any form
			NEL		
			$\frac{v_{\rm Q} - v_{\rm P}}{0 - 13} = -e$	M1	Use of NEL. Allow sign errors but not inversion
			$v_0 - v_p = 13e$	A1	Any form
			Q r		Eliminating one of v_Q or v_P OR allow substitution of given result in one
				M1	equation and check both answers in other equation
			$v_{\rm Q} = 3(1+e)$	B1	cao; aef
			$v_{\rm P}=3-10e$	E1 [7]	Properly shown

Mark Scheme

PMT

(Question	Answer	Marks	Guidance
4	(iii)	Need $v_{\rm P} < 0$ so $3 - 10e < 0$ Hence $\frac{3}{10} < e \le 1$	M1 A1 [2]	Accept \leq cao (Allow $e \leq 1$ omitted) Correct answer www gets 2/2
4	(iv)	When $e > \frac{3}{10}$, its speed is $10e - 3$ We require $(10e - 3) > 3(1 + e)$ so $7e > 6$ and so $\frac{6}{7} < e \le 1$	M1 M1 A1 A1 [4]	FT their v_Q SC1 for $(3 - 10e) > \pm 3(1 + e)$ FT their v_Q cao. Allow $e > \frac{6}{7}$ (0.857) Correct answer www gets 4/4
4	(v)	Either $v_Q = 4.5$ and $v_P = -2$ When they collide the speed of Q is -4.5 and of P is 2 PCLM $10 \times -4.5 + 3 \times 2 = 13V$ so $V = -3$ and velocity is -3 m s ⁻¹	M1 M1 M1 M1 A1 [4]	Substitute $e = 0.5$; FT their v_Q Change signs of their velocities Use of PCLM Allow sign errors cao; OR 3 m s ⁻¹ to the right or use argument about final LM is –ve of original LM
4	(vi)	Or 10(-3(1+e)) + 3(10e - 3) = 13V -39 = 13V so $V = -3$ and velocity is -3 m s^{-1} 3(-3-2) = -15 N s	M1 M1 M1 A1 [4] B1	Use of PCLM; Allow sign errors ; FT their v_Q Change signs of their velocities Simplify cao; OR 3 m s ⁻¹ to the right FT 3(their(v)-2) Using 10(-3 +4.5) = 15 gets B0 until it leads to correct answer

January 2013

)uesti	on	Answer	Marks	Guidance
1	(a)		Take j north and i east velocity: before 5 i - $5\sqrt{3}$ j (after 3 i) I = m(v - u) so I = 120 000 000(- 2 i + $5\sqrt{3}$ j) Modulus is 120 000 000 × 8.888194 = 1.0665 × 10 ⁹ N s so 1.07 × 10 ⁹ N s (to 3 s. f.)	B1 M1 A1 A1 [4]	Resolving initial velocity (may be implied). Allow $5\mathbf{i} + 5\sqrt{3}\mathbf{j}$ or $5\mathbf{i} - 5\sqrt{3}\mathbf{j}$ oe May be implied Allow if only one direction considered or both combined without vectors. Must include an attempt to resolve 10 Accept mass of 120 000 cao Alternative method using a diagram, cos and sine rules
1	(b)	(i)	PCLM $0.4 \times 6 = 0.5 V$ $V = 4.8 \text{ ms}^{-1}$ direction is opposite to that of P	M1 A1 [2]	Implied by 4.8 or -4.8 Allow -4.8 as the speed
1	(b)	(ii)	P travels $6 \times \frac{2}{3} = 4$ m before the collision so Q travels $4 - 2 \times 0.75 = 2.5$ m in $\frac{2}{3}$ s $2.5 = \frac{(4.8 + v_Q)}{2} \times \frac{2}{3}$ Hence $v_Q = 2.7$ ms ⁻¹	B1 B1 M1 E1 [4]	Or find $t = \frac{13}{24}$ for time from edge to collision AND $d = 3.25$ 3.25 - 0.75 = 2.5 Using appropriate <i>suvat</i> FT their 2.5 Answer given

Q	Juesti	on	Answer	Marks	Guidance
1	(b)	(iii)	Suppose friction on Q is F		
			$-F \times \frac{2}{3} = 0.5(2.7 - 4.8)$ so $F = 1.575$	B1	Using $Ft = m(v - u)$ or find $a = -3.15$ and use $F = ma$. FT their 2.7
			$1.575 = \mu \times 0.5 \times 9.8$	M1	$F = \mu R$
				A1	R correct (4.9)
			$\mu = 0.32142$ so 0.321 (3 s. f.)	A1	cao
				[4]	Note: <i>F</i> and <i>R</i> need not be explicit:
					$F=ma$ and $R=mg$ give $\mu = \frac{a}{g}$ (M1A1). Find $a = -3.15$ (B1) gives 0.321
					(A1)
1	(b)	(iv)	Let the speeds after be $V_{\rm P}$ and $V_{\rm Q}$.		
			PCLM		
			$0.4 \times 6 + 0.5 \times 2.7 = 0.4 V_{\rm p} + 0.5 V_{\rm Q}$	M1	PCLM. FT their 2.7 from (ii). Award M1A0 for use of their 4.8 from (i) instead of 2.7
			so $4V_{\rm P} + 5V_{\rm O} = 37.5$	A1	FT their 2.7 from (ii). Accept any form
			NEL		
			$\frac{V_{\rm Q} - V_{\rm P}}{2.7 - 6} = -\frac{1}{8}$	M1	NEL. FT their 2.7 from (ii). Award M1A0 for use of their 4.8 from (i)
			$\frac{1}{2.7-6} = -\frac{1}{8}$		instead of 2.7
			so $V_{\rm Q} - V_{\rm P} = 0.4125$	A1	FT their 2.7 from (ii). Accept any form
			$V_{\rm Q} = 4.35 \text{ so } 4.35 \text{ m s}^{-1}$	A1	cao
				[5]	

C	Juestion	Answer	Marks	Guidance
2	(i)	$455 = 0.01 \times 80 \times 9.8 \times \cos 4 \times 12 + WD$	M1	Use of Fx
			B1	rolling friction force correct (7.82) 12 not needed
			A1	All correct terms in an equation (allow sign errors)
		WD = 361.149 so 361 J (3 s. f.)	A1	cao
			[4]	SC B1B1 for final answer 30.1 seen
2	(ii)	$0.5 \times 80 \times v^2 - 0.5 \times 80 \times 2^2$	M1	Use of W-E equation. Must include GPE, at least one KE and the WD
			B1	Either KE term
		$= 80 \times 9.8 \times 12 \times \sin 4 - 455$	B1	GPE term (656.27)
			A1	All correct terms in an equation (allow sign errors)
		v = 3.0052. so 3.01 m s ⁻¹ (3 s. f.)	A1	cao
			[5]	
2	(iii) Using N2L with driving force <i>S</i>	M1	N2L with at most one force term missing
		$S - (15 + 0.01 \times 80 \times 9.8 \times \cos 5)$	B1	Both resistance terms seen (15 and 7.81)
		$-80 \times 9.8 \times \sin 5$	B1	Condone wrong sign (68.33)
		$= 80 \times 1.5$	A1	All correct terms present; allow sign errors
		S = 211.1402	A1	May be implicit
		405 = Sv	M1	Use of Power = Sv with any S calculated using N2L
		so $v = 1.918$ so 1.92 m s^{-1} (3 s. f.)	A1	FT their S
			[7]	Note: missing out one term in N2L can earn 4/7 (M1B1B0A0A0M1A1)

Q	uestion	Answer	Marks	Guidance
3	(i)	$15\left(\frac{\bar{x}}{\bar{y}}\right) = 2\left(\frac{-1}{2.5}\right) + 9\left(\frac{1.5}{1.5}\right) + 2\left(\frac{4}{0.5}\right) + 2\left(\frac{4.5}{-1}\right)$	M1	A systematic method for at least 1 cpt
			A1 A1	<i>Either</i> all x or all y values correct <i>or</i> 2 vector terms correct on RHS Completely correct expressions seen for all components
		$= \begin{pmatrix} 28.5\\17.5 \end{pmatrix}$		Need not be explicit
		so $\overline{x} = 1.9$	A1	Accept any form
		$\overline{y} = \frac{7}{6}$	A1	Accept any form (1.17, 1.2) but not 1.16
			[5]	
3	(ii)	Referred to Fig 3.1 with c.m. G, G is 2 + 1.9 to the right of K and $3 - \frac{7}{6} = \frac{11}{6}$ below K	B1	FT from (i) May be implied
		When hanging, G is vertically below K	B1	May be implied
		Angle is $\arctan\left(\frac{\frac{11}{6}}{3.9}\right)$	M1	o.e. FT their values but must be attempting to find the appropriate angle
		$= 25.1775$ so 25.2° (3 s. f.)	A1 [4]	cao
3	(iii)	New c.m. is at (1.5, 1.5) & mass of object is 0.3 kg	B1	Do not penalise below if mass of lamina is taken to be 15
		For \overline{x} :	M1	Recognising need first to produce an equation in terms of <i>m</i> for the <i>x</i> -component
		$(0.3 + m) \times 1.5 = 0.3 \times 1.9 + m \times 0$ m = 0.08	M1 A1	Must be 0 not x FT their 1.9 from (i). If 15 used, accept $m = 4$
		For \overline{y} : $(0.3 + 0.08) \times 1.5 = 0.3 \times \frac{7}{6} + 0.08y$	M1	
		so particle should be at (0, 2.75)	A1	cao. Condone no reference to x component. Allow obtained using 15. Allow 2.74, 2.7375 (from 1.17), 2.775 (from 1.16), 2.625 (from 1.2)
			[6]	

Mark Scheme

January	2013
---------	------

C	Question		Answer Ma		Guidance
3		(iv)	The c.m. must lie inside KFDL as seen in the plan in Fig. 3.2 The c.m. shown to be in this region		Some indication of this is what is required. Accept a closed region with KF correct and sides parallel to KL and FD. Correct. Accept freehand. Recognition that com is at (1.7, their \overline{y}) and is related to their critical region even if region is incorrect or calculation with at least 1 correct equation $(3y + 2x = 9 \text{ and } 3y + 4x = 6)$ Do NOT award simply for a recalculation of com as (1.7, 7/6) Properly established including a statement. (i.e. correct region, correct com marked and statement of stability)
				[4]	

Mark Scheme

C	Juesti	on	Answer	Marks	Guidance
4		(i)	Let vertical force from support be <i>R</i> N and tension in string <i>T</i> N. moments about A $30 \times 0.5 \times 2.4 - R \times (2.4 - 0.6) = 0$ R = 20 so force from block is 20 N $\uparrow R + T - 30 = 0$ T = 10 so tension is 10 N	M1 A1 M1 F1 [4]	Use of moments with all relevant moments attempted (FT from <i>T</i> if <i>T</i> found first) FT from <i>R</i>
4	(ii)	(A)	$ \xrightarrow{B} FN \xrightarrow{P} 1.2 \text{ m}^{SN} \xrightarrow{A} $ $ \xrightarrow{0.9 \text{ m}} \xrightarrow{1.2 \text{ m}^{SN}} \xrightarrow{A} \xrightarrow{30 \text{ N}} \xrightarrow{A} \xrightarrow{30 \text{ N}} \xrightarrow{A} \xrightarrow{30 \text{ N}} \xrightarrow{A} \xrightarrow{B} \xrightarrow{R} \sin \theta - F \cos \theta = 0 $ As on the point of slipping $F = 0.6R$ so $R \sin \theta = 0.6R \cos \theta$ so $\sin \theta = 0.6 \cos \theta$ and $\tan \theta = 0.6$	M1 A1 M1 E1 [5]	Must be consideration of a force at A <i>F</i> and <i>R</i> must be identified, e.g. on a diagram Complete argument
			OR $F = mg \sin \theta - S \sin \theta$ $R = mg \cos \theta - S \cos \theta$ As on the point of slipping $F = 0.6R$ $\frac{F}{R} = \frac{(mg - S)\sin \theta}{(mg - S)\cos \theta} = \frac{\sin \theta}{\cos \theta}$ $\tan \theta = 0.6$	M1 A1 M1 M1 E1 [5]	Resolve parallel and perpendicular to rod Both correct F and R must be identified, e.g. on a diagram Divide factored expressions with S included

Q	Juesti	on	Answer	Marks	Guidance
4	(ii)	(B)	$\begin{array}{c} B \\ \hline 0.9 \text{ m} \\ \hline 0.3 \text{ m} \hline 0.3 \text{ m} \\ \hline 0.3 \text{ m} \\ \hline 0.3 \text{ m} \\ \hline 0.3 \text{ m} \hline 0.3 $		
			AP is 1.5 gives $\sin \theta = 0.6$ or $\cos \theta = 0.8$ c. w. moments about A	B1	oe. or $\theta = 36.9^{\circ}$
			$1.5R' - 30 \times 1.2 \times \cos \theta = 0$ R' = 19.2 so 19.2 N	M1 A1	Moments and all terms present. Accept $\cos \theta$ or 0.8 cao
			$\Upsilon S' + R'\cos\theta - 30 = 0$	M1	An equilibrium equation with all relevant forces, resolved appropriately, e.g. $R' + S' \cos \theta = 30 \cos \theta + F' \sin \theta$. Allow $\sin \leftrightarrow \cos$
			(<i>S</i> ' = 14.64)	A1	Correct equation involving only S'. Numerical answer not required
			$ \rightarrow R'\sin\theta - F' = 0 $ $(F' = 11.52)$	M1 A1	Second equilibrium equation with all relevant forces, resolved appropriately. e.g. $F' \cos \theta + S' \sin \theta = 30 \sin \theta$. Allow $\sin \leftrightarrow \cos$ Correct equation involving only F' . Numerical answer not required
			$\mu = \frac{11.52}{14.64}$	M1	Use of $F' = \mu S'$ for a calculated F' and S'
			= 0.78688 so 0.787 (3 s. f.)	A1 [9]	cao

June 2013

(Questi	ion	Answer	Marks	Guidance
1	(a)	(i)	$3 \times 4 + 21 \times 2 = 4U$ 4U = 54 so $U = 13.5$ and speed is 13.5 m s ⁻¹ OR $21 = 4a$; $a = 5.25$ and $v = 3 + 2 \times 5.25$	M1 A1 [2] M1	Use of PCLM and $I = Ft$ Use of $F = ma$ and suvat
			speed is 13.5 m s ⁻¹	A1 [2]	
1	(a)	(ii)	Let V be the speed of S in direction PQ $54 - 2 \times 3 = (4 + 2)V$ 6V = 48 so $V = 8$ and velocity is 8 m s ⁻¹ in direction PQ	M1 E1 [2]	PCLM for coalescence Answer given. Accept no reference to direction.
1	(a)	(iii)	Let velocities of R be u before and v after, both in the direction SR		
			$6 \times 8 + 4u = 6 \times 5 + 4v$	M1	Use of PCLM. Allow any sign convention. All masses and speeds must be correct.
			v - u = 4.5	A1	Any form.
			$\frac{v-5}{u-8} = -\frac{1}{4}$	M1	Use of NEL correct way up; allow sign errors
			4v + u = 28 Solving	A1	Any form signs consistent with PCLM eqn
			u = 2 so 2 m s ⁻¹ in the direction SR	A1	cao NOTE that a sign error in NEL leads to $u = -2$; this gets A0
			v = 6.5 so 6.5 m s ⁻¹ in the direction SR	A1	cao. Withhold only 1 of the final A marks if the directions not clear.
				[6]	Directions can be inferred from a CLEAR diagram

June 2013

Mark Scheme

Qı	uesti	on	Answer	Marks	Guidance
1 ((b)	(i)	Find v, the speed at which particle hits the plane $\frac{1}{2} \times 0.2 \times v^2 - \frac{1}{2} \times 0.2 \times 5^2 = 0.2 \times 10 \times 10$	M1	Use of WE or <i>suvat</i> must use distance of 10 allow $g = 9.8$
			so $v^2 = 225$ and $v = 15$	A1	Answer not required $(v = 14.9 \text{ if } g = 9.8)$
			$\cos\alpha = \frac{4}{5}, \sin\alpha = \frac{3}{5}$	B1	Use of either expression or use of 36.9°
			Let velocity after be at β to the plane Parallel to the plane		
			$15\cos\alpha = 13\cos\beta$	M1	Attempt to conserve velocity component parallel to plane. Allow use of 5 instead of 15
			So $\cos\beta = \frac{12}{13}$ and $\beta = 22.61$ so 22.6° (3 s. f.)	A1	$(\beta = 23.8^{\circ} \text{ if } g = 9.8)$
			Perpendicular to the plane: $13\sin\beta = e \times 15\sin\alpha$	M1	Attempt to use NEL perpendicular to plane: Allow use of 5 instead of 15 or use tan β = etan α
			$\sin\beta = \frac{5}{13}$ so $13 \times \frac{5}{13} = 15 \times \frac{3}{5} \times e$ and $e = \frac{5}{9}$	A1	o.e. find $\tan \beta = \frac{5}{12}$
			so $13 \times \frac{5}{13} = 15 \times \frac{3}{5} \times e$ and $e = \frac{5}{9}$	A1	cao Accept 0.56 ($e = 0.589$ if $g = 9.8$)
				[8]	
			OR: First three marks as above	M1A1B1	
			Parallel to plane, $u_x = 15 \cos \alpha (= 12)$ and $v_x = u_x (= 12)$	M1	Attempt to conserve velocity component parallel to plane. Allow use of 5 instead of 15
			$\cos\beta = \frac{v_x}{v} = \frac{12}{13} \qquad \beta = 22.6^{\circ}$	A1	
			Perpendicular to plane, $u_y = 15 \sin \alpha (=9)$ and $v_y = eu_y (=9e)$	M1	Attempt to use NEL perpendicular to plane. Allow use of 5 instead of 15
			$v_x^2 + v_y^2 = 13^2$	A1	Use Pythagoras' theorem for velocities after collision in attempt to find e
			$12^{2} + (9e)^{2} = 13^{2}$ so $e^{2} = \frac{25}{81}$ $e = \frac{5}{9}$	A1	
				[8]	

June 2013

(Question		Answer	Marks	Guidance
1	(b)	(ii)	Impulse is perp to plane with mod		
			$0.2(13\sin\beta - (-15\sin\alpha)) = 0.2(5 - (-9))$	M1	For use of $I = m (v - u)$ perp to the plane 0.2(5-9) gets M1A0
			= 2.8 N s	A1	cao
				[2]	
2	(i)		WD is $800 \times 9.8 \times 6 + 400 \times 6$ J	M1	WD as <i>Fd</i> Used in TWO terms
			= 49 440	E1	
			Power is 49440 ÷ 12	M1	Power is $WD / \Delta t$
			= 4120 W	A1	cao
				[4]	
2	(ii)		Power is $(800 \times 9.8 + 400) \times 0.55$	M1	Power as <i>Fv</i> in one term
				A1	All correct
			= 4532 W	A1	cao
				[3]	
2	(iii)		Let speed be <i>v</i>		
			$\frac{1}{2} \times 800v^2 = 800 \times 9.8 \times 3 - 400 \times 3$	M1	Use of W-E equation Must include KE and at least one WD term
				A1	Allow only sign errors
				A1	All correct
			$v^2 = 55.8$ so $v = 7.4699$		
					SC: Use of N2L and <i>suvat</i> :
			and speed is 7.47 m s ^{-1} (3 s.f.)	A1	M1 Complete method
					A1 7.47 cao
				[4]	
2	(iv)		$\frac{1}{2} \times 800 \times \frac{v^2}{4} - \frac{1}{2} \times 800 \times v^2$	M1	Use of W-E equation Must include 2 KE terms and a WD term
				B1	Final KE term correct. FT their v.
			$=(800 \times 9.8 - 400) \times 0.8$	B1	One correct WD term
			– WD	A1	All terms present. Allow sign errors and FT their v.
					cao
			WD is 22 692 so 22 700 J (3 s. f.)	A1	SC Use of N2L and <i>suvat</i> :
			WD 15 22 072 50 22 700 J (5 5. 1.)		Award maximum of B1 for 'Average force (28365) x 0.8'
				[5]	

Mark Scheme

4762

June	2013
------	------

(Question	Answer	Marks	Guidance	
				Condone using cm not m in moments in any part if consistent	
3	(i)	c.w. moments about A			
		$60\cos 40 \times 0.3 - 60\sin 40 \times 0.1$	M1	oe e.g. $60(0.3 - 0.1 \tan 40)\sin 50$ or $60 \times \frac{1}{\sqrt{10}}\cos(90^\circ - \arctan 3 + 40^\circ)$ Method of dealing with moment of weight. Allow $\cos \leftrightarrow \sin$	
			A1	Both weight terms correct. Allow wrong overall sign but not both terms with the same sign	
		= 9.93207 so 9.93 N m (3 s. f.)	E1 [3]		
3	(ii)	$P\cos 40 \times 0.2 - 9.93207 = 0$	M1	Moments of all relevant forces attempted. No extra terms. Allow $\cos \leftrightarrow \sin$	
		<i>P</i> = 64.827 so 64.8 (3 s. f.)	A1 [2]	cao (64.813 if 9.93 used)	
3	(iii)	a.c. moments about A to find NR, R, at B $R \times 0.8 = 9.93$ or $R \times 0.8 + 60 \sin 40 \times 0.1 - 60 \cos 40 \times 0.3 = 0$	M1	Attempt to use moments to find <i>R</i> . Moments of all relevant forces attempted. No extra terms. Allow $\cos \leftrightarrow \sin$ Note that mmts about B can score M1 only if mmt of horiz compt of force at A is included. If <i>R</i> is taken as vertical, M0 FT their moment of weight from (i)	
		R = 12.4150 Resolve vertically		Not a required answer	
		$Y - 60 + R\cos 40 = 0$	depM1	Note that the second M mark awarded in this part must be for a complete method to find <i>Y</i> :	
		so <i>Y</i> = 50.489 so 50.5 N (3 s. f.)	A1 [4]	FT their calculated <i>R</i>	

June	2013
------	------

	Question		Answer	Marks	Guidance
3	(iv)		resolve perp to plane		
			$R - 60\cos 40 - 200\sin 40 = 0$	M1	All terms present and no extra terms. Components of 60 and 200; allow $\cos \leftrightarrow \sin$
				A1	
			R = 174.52		Not a required answer
			N2L up the plane		
			$200\cos 40 - F - 60\sin 40 = \frac{60}{9.8} \times 1.75$	M1	Use of N2L with all terms present and no extras. Components of 60 and 200; allow $\cos \leftrightarrow \sin$ Allow use of 60 for mass
				B1	Use of mass not weight
				A1	FT use of weight and/or sign errors
			F = 103.927	A1	All correct. Not a required answer
			As friction limiting $F = \mu R$ so		
			$\mu = \frac{103.927}{174.520}$	M1	FT their F and their R
			= 0.59550 so 0.596 (3 s. f.)	A1	cao
				[8]	

June 2013

4762

4

Question		Answer		Guidance
4 (a)	(i)	Write $d = 0.8$		
		$(2.5+1.2+1.3+2.4) \times d \times \left(\frac{\overline{x}}{\overline{y}}\right)$	M1	Method for c.m (length is 7.4 m, mass is 5.92 kg)
		$=2.5d\binom{1.2}{-0.35}+1.2d\binom{2.4}{-0.1}+1.3d\binom{1.8}{0.25}+2.4d\binom{1.2}{0}$	B1	One rod mass and cpts correct or if done by separate x and y equations 2 rod components and masses correct. (Allow length used instead of mass)
		OR: $(2+0.96+1.04+1.92) \times \left(\frac{\overline{x}}{\overline{y}}\right)$		
		$= 2\binom{1.2}{-0.35} + 0.96\binom{2.4}{-0.1} + 1.04\binom{1.8}{0.25} + 1.92\binom{1.2}{0}$		
			B1	Another rod dealt with correctly or if done by separate x and y equations, the other equation attempted with 2 rod components and masses correct. (Allow length used instead of mass)
		$7.4 \begin{pmatrix} \overline{x} \\ \overline{y} \end{pmatrix} = \begin{pmatrix} 3+2.88+2.34+2.88 \\ -0.875-0.12+0.325+0 \end{pmatrix} = \begin{pmatrix} 11.1 \\ -0.67 \end{pmatrix}$		
		OR:		
		$5.92 \left(\frac{\overline{x}}{\overline{y}} \right) = \left(\begin{array}{c} 2.4 + 2.304 + 2.304 + 1.872 \\ -0.7 - 0.096 + 0.26 + 0 \end{array} \right) = \left(\begin{array}{c} 8.88 \\ -0.536 \end{array} \right)$		
		$\overline{x} = 1.5$	E1	Clearly shown, with at least one intermediate step
		$\overline{y} = -0.090540 = -0.0905$ (3 s. f.)	A1	Condone - 0.09
			[5]	

June	2013
------	------

Question		ion	Answer	Marks	Guidance
4	(a)	(ii)	EITHER: New c.m. has $\overline{x} = 1.2$	M1	Identifying and using a suitable condition.
			$(5.92 + m) \times 1.2 = 5.92 \times 1.5 + m \times 0$	M1	Complete method
			m = 1.48	A1	cao
				[3]	
			OR: Moment about any point is zero	M1	Identifying a suitable condition.
			e.g. about S: $1.2mg = 0.3 \times 5.92g$	M1	Allow g omitted. Correct number of terms must be included
			m = 1.48	A1	cao
	<i>(</i> -)	([3]	
4	(b)	(i)	Consider the equilibrium at R	51	
			Resolving horizontally gives $T_{QR} = 0$	E1	
			Then resolving vertically gives $T_{OR} = 0$	E1 [2]	
4	(b)	(ii)	c.w. moments about O		
-	(0)	(11)	$120 \times 1 + 60 \times 2 = 3T$	M1	May also be argued by first considering internal forces
			so $T = 80$	A1	way also be argued by first considering internal forces
			Resolve to give $X = 80$ and $Y = 180$	A1	FT $X = T$. Only Y =180 scores 0
				[3]	
4	(b)	(iii)		B1	All correct. Accept <i>T</i> , <i>X</i> and <i>Y</i> labelled but not substituted. Accept mixes of T and C. Require pairs of arrows with label on OQ, OP
					and PQ.
				[1]	
					Forces internal to the rods have been taken to be tensions.
4	(b)	(iv)	Take angle OPQ as α		
			At P $\downarrow 60 + T_{\text{OP}} \sin \alpha = 0$	M1	Equilibrium at ANY pin-joint (not R)
				A1	Correct equation(s) that leads directly to finding T_{OP} or T_{QP}
			$\sin \alpha = \frac{3}{\sqrt{13}}: \alpha = 56.3^{\circ}$		
			$T_{\rm OP} = -\frac{60}{\sin \alpha} = -20\sqrt{13}$ so $20\sqrt{13}$ N (C)	A1	o.e. Accept 72.1 N
			At P $\leftarrow T_{\rm QP} + T_{\rm OP} \cos \alpha = 0$	M1	A second equilibrium equation leading to a second internal force
			so $T_{\rm OP} = 40$ so 40 N (T)	A1	cao T/C correct for both rods
			*	[5]	